Articles | Volume 6, issue 5
https://doi.org/10.5194/wes-6-1169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-1169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion
Alessandro Fontanella
CORRESPONDING AUTHOR
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156, Milan, Italy
Ilmas Bayati
Maritime Research Institute Netherlands (MARIN), Wageningen, 6708 PM, the Netherlands
Robert Mikkelsen
Technical University of Denmark (DTU), Department of Wind Energy, Lyngby, Denmark
Marco Belloli
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156, Milan, Italy
Alberto Zasso
Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156, Milan, Italy
Related authors
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci., 10, 1369–1387, https://doi.org/10.5194/wes-10-1369-2025, https://doi.org/10.5194/wes-10-1369-2025, 2025
Short summary
Short summary
This paper investigates the impact of large movements allowed by floating wind turbine foundations on their aerodynamics and wake behavior. Wind tunnel tests with a model turbine reveal that platform motions affect wake patterns and turbulence levels. Insights from these experiments are crucial for optimizing large-scale floating wind farms. The dataset obtained from the experiment is published and can aid in developing simulation tools for floating wind turbines.
Alessandro Fontanella, Stefano Cioni, Francesco Papi, Sara Muggiasca, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-106, https://doi.org/10.5194/wes-2025-106, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the movement of floating wind turbines affects nearby turbines. Using wind tunnel experiments, we found that certain motions of an upstream turbine can improve the energy produced by a downstream one and change the forces it experiences. These effects depend on how the turbines are spaced and aligned. Our results show that the motion of floating turbines plays a key role in how future offshore wind farms should be designed and operated.
Alessandro Fontanella, Giorgio Colpani, Marco De Pascali, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 9, 1393–1417, https://doi.org/10.5194/wes-9-1393-2024, https://doi.org/10.5194/wes-9-1393-2024, 2024
Short summary
Short summary
Waves can boost a floating wind turbine's power output by moving its rotor against the wind. Studying this, we used four models to explore the impact of waves and platform dynamics on turbines in the Mediterranean. We found that wind turbulence, not waves, primarily affects power fluctuations. In real conditions, floating wind turbines produce less energy compared to fixed-bottom ones, mainly due to platform tilt.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Alessandro Fontanella, Elio Daka, Felipe Novais, and Marco Belloli
Wind Energ. Sci., 8, 1351–1368, https://doi.org/10.5194/wes-8-1351-2023, https://doi.org/10.5194/wes-8-1351-2023, 2023
Short summary
Short summary
This study aims to enhance wind turbine modeling by incorporating industry-standard control functionalities. A control design framework was developed and applied to a 1 : 100 scale model of a large floating wind turbine. Wind tunnel tests confirmed the scaled turbine accurately reproduced the steady-state rotor speed, blade pitch, and thrust torque characteristics of the full-size turbine. However, challenges arose in simulating the turbine's aerodynamic response during above-rated operation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Alessandro Fontanella, Alan Facchinetti, Simone Di Carlo, and Marco Belloli
Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, https://doi.org/10.5194/wes-7-1711-2022, 2022
Short summary
Short summary
The aerodynamics of floating wind turbines is complicated by large motions permitted by the foundation. The interaction between turbine, wind, and wake is not yet fully understood. The wind tunnel experiments of this paper shed light on the aerodynamic force and wake response of the floating IEA 15 MW turbine subjected to platform motion as would occur during normal operation. This will help future research on turbine and wind farm control.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Leonardo Pagamonci, Francesco Papi, Gabriel Cojocaru, Marco Belloli, and Alessandro Bianchini
Wind Energ. Sci., 10, 1707–1736, https://doi.org/10.5194/wes-10-1707-2025, https://doi.org/10.5194/wes-10-1707-2025, 2025
Short summary
Short summary
The study presents a critical analysis using wind tunnel experiments and large-eddy simulations aimed at quantifying to what extent turbulence affects the wake structures of a floating turbine undergoing large motions. Analyses show that, whenever realistic turbulence comes into play, only small gains in terms of wake recovery are noticed in comparison to bottom-fixed turbines, suggesting the absence of hypothesized superposition effects between inflow and platform motion.
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci., 10, 1369–1387, https://doi.org/10.5194/wes-10-1369-2025, https://doi.org/10.5194/wes-10-1369-2025, 2025
Short summary
Short summary
This paper investigates the impact of large movements allowed by floating wind turbine foundations on their aerodynamics and wake behavior. Wind tunnel tests with a model turbine reveal that platform motions affect wake patterns and turbulence levels. Insights from these experiments are crucial for optimizing large-scale floating wind farms. The dataset obtained from the experiment is published and can aid in developing simulation tools for floating wind turbines.
Alessandro Fontanella, Stefano Cioni, Francesco Papi, Sara Muggiasca, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-106, https://doi.org/10.5194/wes-2025-106, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the movement of floating wind turbines affects nearby turbines. Using wind tunnel experiments, we found that certain motions of an upstream turbine can improve the energy produced by a downstream one and change the forces it experiences. These effects depend on how the turbines are spaced and aligned. Our results show that the motion of floating turbines plays a key role in how future offshore wind farms should be designed and operated.
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149, https://doi.org/10.5194/wes-2024-149, 2025
Publication in WES not foreseen
Short summary
Short summary
This paper presents the findings of a study aimed at describing the flow system downstream of a wind turbine operated with a novel control technology. Results from heavy high-fidelity simulations are used to obtain a low-fidelity model that is quick enough to be used for the optimization of such technologies. Additionally, we were able to retrieve an improved understanding of the physics of such systems under different inflow conditions.
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024, https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
Short summary
When standing still without a nacelle or blades, the vibrations on a wind turbine tower are of concern to its structural health. This study finds that the air which flows around the tower recirculates behind the tower, forming so-called wakes. These wakes initiate the vibration, and the movement itself causes the vibration to increase or decrease depending on the wind speed. The current study uses a methodology called force partitioning to analyse this in depth.
Alessandro Fontanella, Giorgio Colpani, Marco De Pascali, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 9, 1393–1417, https://doi.org/10.5194/wes-9-1393-2024, https://doi.org/10.5194/wes-9-1393-2024, 2024
Short summary
Short summary
Waves can boost a floating wind turbine's power output by moving its rotor against the wind. Studying this, we used four models to explore the impact of waves and platform dynamics on turbines in the Mediterranean. We found that wind turbulence, not waves, primarily affects power fluctuations. In real conditions, floating wind turbines produce less energy compared to fixed-bottom ones, mainly due to platform tilt.
Zhaoyu Zhang, Feng Guo, David Schlipf, Paolo Schito, and Alberto Zasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-162, https://doi.org/10.5194/wes-2023-162, 2024
Preprint withdrawn
Short summary
Short summary
This paper aims to analyse the uncertainty in wind direction estimation of LIDAR and to improve the estimation accuracy. Findings demonstrate that this LIDAR estimation method is insufficient to supervise the turbine yaw control system in terms of both accuracy and timeliness. Future research should apply more advanced wind flow models to explore more accurate wind field reconstruction methods.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Alessandro Fontanella, Elio Daka, Felipe Novais, and Marco Belloli
Wind Energ. Sci., 8, 1351–1368, https://doi.org/10.5194/wes-8-1351-2023, https://doi.org/10.5194/wes-8-1351-2023, 2023
Short summary
Short summary
This study aims to enhance wind turbine modeling by incorporating industry-standard control functionalities. A control design framework was developed and applied to a 1 : 100 scale model of a large floating wind turbine. Wind tunnel tests confirmed the scaled turbine accurately reproduced the steady-state rotor speed, blade pitch, and thrust torque characteristics of the full-size turbine. However, challenges arose in simulating the turbine's aerodynamic response during above-rated operation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Federico Taruffi, Simone Di Carlo, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 8, 71–84, https://doi.org/10.5194/wes-8-71-2023, https://doi.org/10.5194/wes-8-71-2023, 2023
Short summary
Short summary
The work focuses on the experimental validation of the design of a large-scale wind turbine model, based on the DTU 10 MW reference wind turbine, installed on a scaled multipurpose platform deployed in an outdoor natural laboratory. The aim of the validation is to assess whether the behaviour of the model respects the targets established during the design phase in terms of structure, rotor aerodynamics and control. The outcome of the investigation ensures the validity of the design process.
Alessandro Fontanella, Alan Facchinetti, Simone Di Carlo, and Marco Belloli
Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, https://doi.org/10.5194/wes-7-1711-2022, 2022
Short summary
Short summary
The aerodynamics of floating wind turbines is complicated by large motions permitted by the foundation. The interaction between turbine, wind, and wake is not yet fully understood. The wind tunnel experiments of this paper shed light on the aerodynamic force and wake response of the floating IEA 15 MW turbine subjected to platform motion as would occur during normal operation. This will help future research on turbine and wind farm control.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021, https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Short summary
Curved blade tips can potentially have a significant impact on wind turbine performance and loads. A swept tip shape optimized for wind turbine applications is tested in a wind tunnel. A range of numerical aerodynamic simulation tools with various levels of fidelity are compared. We show that all numerical tools except for the simplest blade element momentum based are in good agreement with the measurements, suggesting the required level of model fidelity necessary for the design of such tips.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Cited articles
Bak, C., Zahle, F., Bitsche, R., Taeseong, K., Yde, A., Henriksen, L. C., Hansen, M. H., Jose, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, DTU Wind Energy Report, Danish Wind Power Research 2013, 27–28 May 2013. a
Bayati, I., Belloli, M., Bernini, L., and Zasso, A.: Wind tunnel validation of
AeroDyn within LIFES50+ project: imposed Surge and Pitch tests, J. Phys.-Conference Series, 753, 092001,
https://doi.org/10.1088/1742-6596/753/9/092001, 2016. a, b, c
Bayati, I., Belloli, M., Bernini, L., Giberti, H., and Zasso, A.:
Scale model technology for floating offshore wind turbines, IET Renewable
Power Generation, 11, 1120–1126, https://doi.org/10.1049/iet-rpg.2016.0956, 2017. a
Bayati, I., Belloli, M., Bernini, L., and Zasso, A.: Aerodynamic design
methodology for wind tunnel tests of wind turbine rotors, J. Wind
Eng. Ind. Aerod., 167, 217–227,
https://doi.org/10.1016/j.jweia.2017.05.004, 2017a. a
Bayati, I., Belloli, M., Bernini, L., and Zasso, A.: Wind Tunnel Wake
Measurements of Floating Offshore Wind Turbines, Energy Proced., 137, 214–222,
https://doi.org/10.1016/j.egypro.2017.10.375, 2017b. a, b, c, d
Bayati, I., Facchinetti, A., Fontanella, A., Giberti, H., and Belloli, M.: A
wind tunnel/HIL setup for integrated tests of Floating Offshore Wind
Turbines, J. Phys.-Conference Series, 1037, 052025,
https://doi.org/10.1088/1742-6596/1037/5/052025, 2018. a
Bianchi, F., de Battista, H., and Mantz, R.: Wind Turbine Control Systems,
Springer, https://doi.org/10.1007/1-84628-493-7, 2007. a
Boorsma, K. and Caboni, M.: Numerical analysis and validation of unsteady
aerodynamics for floating offshore wind turbines, TNO 2020 R11345, 880224,
available at: http://resolver.tudelft.nl/uuid:10b69f85-dd5a-4f74-ac68-fdc62c01ead3, last access: 27 October 2020. a
Bredmose, H., Lemmer, F., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R.,
Larsen, T. S., Fjelstrup, T., Yu, W., Lomholt, A., Boehm, L., and Armendariz,
J. A.: The Triple Spar campaign: Model tests of a 10 MW floating wind turbine
with waves, wind and pitch control, 14th Deep Sea Offshore
Wind R&D Conference, EERA DeepWind'2017, Energ. Proc., 137, 58–76,
https://doi.org/10.1016/j.egypro.2017.10.334, 2017. a
Chakraborty, P., Balachandar, S., and Adrian, R. J.: On the relationships
between local vortex identification schemes, J. Fluid Mech., 535,
189–214, https://doi.org/10.1017/S0022112005004726, 2005. a
Cormier, M., Caboni, M., Lutz, T., Boorsma, K., and Kramer, E.: Numerical
analysis of unsteady aerodynamics of floating offshore wind turbines, J. Phys.-Conference Series, 1037, 072048,
https://doi.org/10.1088/1742-6596/1037/7/072048, 2018. a, b, c
de Vaal, J., Hansen, M., and Moan, T.: Effect of wind turbine surge motion on
rotor thrust and induced velocity, Wind Energy, 17, 105–121,
https://doi.org/10.1002/we.1562, 2014. a
Farrugia, R., Sant, T., and Micallef, D.: Investigating the aerodynamic
performance of a model offshore floating wind turbine, Renewable Energy,
70, 24–30, https://doi.org/10.1016/j.renene.2013.12.043, 2014. a
Ferreira, C., Yu, W., Sala, A., and Vire, A.: Dynamic inflow model for a Floating Horizontal Axis Wind Turbine in surge motion, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2021-34, in review, 2021. a
Fontanella, A., Al, M., van der Hoek, D., Liu, Y., van Wingerden, J., and
Belloli, M.: A control-oriented wave-excited linear model for offshore
floating wind turbines, J. Phys.-Conference Series, 1618,
022038, https://doi.org/10.1088/1742-6596/1618/2/022038, 2020. a
Fontanella, A., Bayati, I., Mikkelsen, R., Belloli, M., and Zasso, A.: UNAFLOW: UNsteady Aerodynamics of FLOating Wind turbines, Zenodo [data set], https://doi.org/10.5281/zenodo.4740006, 2021. a, b
Fu, S., Jin, Y., Zheng, Y., and Chamorro, L. P.: Wake and power fluctuations
of a model wind turbine subjected to pitch and roll oscillations, Appl.
Energ., 253, 113605, https://doi.org/10.1016/j.apenergy.2019.113605,
2019. a
Goupee, A., Koo, B., Kimball, R., Lambrakos, K., and Dagher, H.: Experimental
Comparison of Three Floating Wind Turbine Concepts, J. Offshore Mech. Arct., 136, 020906,
https://doi.org/10.1115/1.4025804, 2012. a
Goupee, A., Fowler, M., Kimball, R., Helder, J., and Ridder, E. J.: Additional
wind/wave basin testing of the DeepCwind semisubmersible with a
performance-matched wind turbine, 33rd International Conference on Ocean,
Offshore and Arctic Engineering (OMAE), 8–13 June 2014, San Francisco, CA, USA, 9B,
https://doi.org/10.1115/OMAE2014-24172, 2014. a
Goupee, A., Kimball, R., and Dagher, H.: Experimental observations of active
blade pitch and generator control influence on floating wind turbine
response, Renewable Energy, 104, 9–19, https://doi.org/10.1016/j.renene.2016.11.062,
2017. a
GVPM: Homepage, available at: https://www.windtunnel.polimi.it (last access: 8 September 2021), 2020. a
Hu, H., Khosravi, M. M., and Sarkar, P.: An Experimental Investigation on the
Performance and the Wake Characteristics of a Wind Turbine Subjected to Surge
Motion, AIAA 2015-1207, 33rd Wind Energy Symposium, January 2015, https://doi.org/10.2514/6.2015-1207, 2015. a
Jonkman, J.: Influence of Control on the Pitch Damping of a Floating Wind
Turbine, AIAA 2008-1306, 46th AIAA Aerospace Sciences Meeting and Exhibit, January 2008, https://doi.org/10.2514/6.2008-1306, 2008. a
Kimball, R., Goupee, A. J., Fowler, M. J., de Ridder, E.-J., and Helder, J.:
Wind/Wave Basin Verification of a Performance-Matched Scale-Model Wind
Turbine on a Floating Offshore Wind Turbine Platform, in: International Conference on Offshore Mechanics and
Arctic Engineering, 9B, 1–10, https://doi.org/10.1115/OMAE2014-24166, 2014. a
Larsen, T. and Hanson, T.: A method to avoid negative damped low frequent tower
vibrations for a floating, pitch controlled wind turbine, J. Phys. Conf. Ser., 75, 012073,
https://doi.org/10.1088/1742-6596/75/1/012073, 2007. a
Lemmer, F., Yu, W., Luhmann, B., Schlipf, D., and Cheng, P. W.: Multibody
modeling for concept-level floating offshore wind turbine design, Multibody
Syst. Dyn., 49, 203–236, https://doi.org/10.1007/s11044-020-09729-x, 2020. a
Mancini, S., Boorsma, K., Caboni, M., Cormier, M., Lutz, T., Schito, P., and Zasso, A.: Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion, Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, 2020. a, b
Martin, H. R., Kimball, R. W., Viselli, A. M., and Goupee, A. J.: Methodology
for Wind/Wave Basin Testing of Floating Offshore Wind Turbines, J.
Offshore Mech. Arct., 136, 020905, https://doi.org/10.1115/1.4025030,
2014.
a
Moriarty, P. and Hansen, A.: AeroDyn Theory Manual,
available at: https://www.nrel.gov/docs/fy05osti/36881.pdf (last access: March 2021), 2005. a
Nanos, E. M., Letizia, S., Clemente, D. J. B., Wang, C., Rotea, M., Iungo,
V. I., and Bottasso, C. L.: Vertical wake deflection for offshore floating
wind turbines by differential ballast control, J. Phys.-Conference
Series, 1618, 022047, https://doi.org/10.1088/1742-6596/1618/2/022047, 2020. a
Robertson, A., Bachynski, E. E., Gueydon, S., Wendt, F., and Schünemann,
P.: Total experimental uncertainty in hydrodynamic testing of a
semisubmersible wind turbine, considering numerical propagation of systematic
uncertainty, Ocean Eng., 195, 106605,
https://doi.org/10.1016/j.oceaneng.2019.106605, 2020. a
Sauder, T., Chabaud, V., Thys, M., Bachynski, E. E., and Sæther, L. O.:
Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine:
Part I - The Hybrid Approach, in:
International Conference on Offshore Mechanics and Arctic Engineering, 6, v006T09A039,
https://doi.org/10.1115/OMAE2016-54435, 2016. a
Schliffke, B., Aubrun, S., and Conan, B.: Wind Tunnel Study of a
“Floating” Wind Turbine's Wake in an
Atmospheric Boundary Layer with Imposed Characteristic Surge Motion, J. Phys.-Conference Series, 1618, 062015,
https://doi.org/10.1088/1742-6596/1618/6/062015, 2020. a, b, c
van der Veen, G., Couchman, I., and Bowyer, R.: Control of floating wind
turbines, in: 2012 American Control Conference (ACC), IEEE, Proceedings of the 2012 American Control Conference (ACC), 3148–3153,
https://doi.org/10.1109/ACC.2012.6315120, 2012. a
Vermeer, L., Sazrensen, J., and Crespo, A.: Wind turbine wake aerodynamics,
Prog. Aerospace Sci., 39, 467–510,
https://doi.org/10.1016/S0376-0421(03)00078-2, 2003. a
Wise, A. S. and Bachynski, E. E.: Wake meandering effects on floating wind
turbines, Wind Energy, 23, 1266–1285, https://doi.org/10.1002/we.2485, 2020. a, b, c
Short summary
The scale model wind tunnel experiment presented in this paper investigated the aerodynamic response of a floating turbine subjected to imposed surge motion. The problem is studied under different aspects, from airfoil aerodynamics to wake, in a coherent manner. Results show quasi-static behavior for reduced frequencies lower than 0.5 and possible unsteadiness for higher surge motion frequencies. Data are made available to the public for future verification and calibration of numerical models.
The scale model wind tunnel experiment presented in this paper investigated the aerodynamic...
Altmetrics
Final-revised paper
Preprint