Articles | Volume 6, issue 1
https://doi.org/10.5194/wes-6-61-2021
https://doi.org/10.5194/wes-6-61-2021
Research article
 | 
12 Jan 2021
Research article |  | 12 Jan 2021

Parameterization of wind evolution using lidar

Yiyin Chen, David Schlipf, and Po Wen Cheng

Related authors

Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022,https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary

Cited articles

Bossanyi, E.: Un-freezing the turbulence: Application to LiDAR-assisted wind turbine control, IET Renewable Power Generation, 7, 321–329, https://doi.org/10.1049/iet-rpg.2012.0260, 2013. a
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R.: Classification and regression trees, CRC Press, Boca Raton, FL, 1984. a
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971. a
Carious, J.-P.: Pulsed Lidars, in: Remote Sensing for Wind Energy, DTU Wind Energy-E-Report-0029(EN), chap. 5, DTU Wind Energy, Roskilde, Denmark, 104–121, 2013. a, b, c
Chen, Y.: Parameterization of wind evolution model using lidar measurement, Zenodo, https://doi.org/10.5281/zenodo.3366119, 2019. a, b
Download
Short summary
Wind evolution is currently of high interest, mainly due to the development of lidar-assisted wind turbine control (LAC). Moreover, 4D stochastic wind field simulations can be made possible by integrating wind evolution into 3D simulations to provide a more realistic simulation environment for LAC. Motivated by these factors, we investigate the potential of Gaussian process regression in the parameterization of a two-parameter wind evolution model using data of two nacelle-mounted lidars.
Share
Altmetrics
Final-revised paper
Preprint