Articles | Volume 7, issue 2
https://doi.org/10.5194/wes-7-603-2022
https://doi.org/10.5194/wes-7-603-2022
Research article
 | 
15 Mar 2022
Research article |  | 15 Mar 2022

Local correlation-based transition models for high-Reynolds-number wind-turbine airfoils

Yong Su Jung, Ganesh Vijayakumar, Shreyas Ananthan, and James Baeder

Related authors

Grand challenges in the design, manufacture, and operation of future wind turbine systems
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023,https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Progress in the validation of rotor aerodynamic codes using field data
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023,https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary

Cited articles

Abbott, I. H. and von Doenhoff, A. E.: Theory of Wing Sections: Including a Summary of Airfoil Data, Dover Publicatios, Inc., 586–587, ISBN 978-0486605869, 1959. a
Bak, C., Zahle, C., Bitsche, R., Kim, T., Yde, A., Henrikson, L. C., Hansen, M. H., Blasques, J. P. A. A., Guanaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, Tech. rep., DTU, https://findit.dtu.dk/en/catalog/2389486991 (last access: July 2020), 2013. a, b, c, d, e, f, g, h, i, j
Ceyhan, O., Pires, O., and Munduate, X.: AVATAR HIGH REYNOLDS NUMBER TESTS ON AIRFOIL DU00-W-212, Tech. rep., Zenodo [data set], https://doi.org/10.5281/zenodo.439827, 2017a. a, b, c, d, e, f, g, h, i, j
Ceyhan, O., Pires, O., Munduate, X., Sorensen, N., Reichstein, T., Schaffarczyk, A., Diakakis, K., Papadakis, G., Daniele, E., Schwarz, M., Lutz, T., and Prieto, R.: Summary of the Blind Test Compaign to predict the High Reynolds number performance of DU00-W-210 airfoil, in: AIAA Scitech, https://doi.org/10.2514/6.2017-0915, 2017b. a, b, c, d, e, f, g, h, i, j, k, l
Coder, J.: Further Development of the Amplification Factor Transport Transition Model for Aerodynamic Flows, in: AIAA Scitech, https://doi.org/10.2514/6.2019-0039, 2019. a, b, c, d, e
Download
Short summary
In RANS CFD, the eN-based method showed its superiority over local correlation-based transition models (LCTMs) coupled with the SST turbulence model for predicting transition behavior at high-Reynolds-number flows (3–15 million). We evaluated the performance of two LCTMs coupled with the SA turbulence model. As a result, the SA-based two-equation transition model showed a comparable performance with the eN-based method and better glide ratio (L/D) predictions than the SST-based model.
Share
Altmetrics
Final-revised paper
Preprint