Articles | Volume 7, issue 2
Wind Energ. Sci., 7, 603–622, 2022
https://doi.org/10.5194/wes-7-603-2022
Wind Energ. Sci., 7, 603–622, 2022
https://doi.org/10.5194/wes-7-603-2022
Research article
15 Mar 2022
Research article | 15 Mar 2022

Local correlation-based transition models for high-Reynolds-number wind-turbine airfoils

Yong Su Jung et al.

Related authors

Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems
Paul Veers, Carlo Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Athanasios Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-32,https://doi.org/10.5194/wes-2022-32, 2022
Preprint under review for WES
Short summary
Large-eddy simulation sensitivities to variations of configuration and forcing parameters in canonical boundary-layer flows for wind energy applications
Jeffrey D. Mirocha, Matthew J. Churchfield, Domingo Muñoz-Esparza, Raj K. Rai, Yan Feng, Branko Kosović, Sue Ellen Haupt, Barbara Brown, Brandon L. Ennis, Caroline Draxl, Javier Sanz Rodrigo, William J. Shaw, Larry K. Berg, Patrick J. Moriarty, Rodman R. Linn, Veerabhadra R. Kotamarthi, Ramesh Balakrishnan, Joel W. Cline, Michael C. Robinson, and Shreyas Ananthan
Wind Energ. Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018,https://doi.org/10.5194/wes-3-589-2018, 2018
Short summary
Field test of wake steering at an offshore wind farm
Paul Fleming, Jennifer Annoni, Jigar J. Shah, Linpeng Wang, Shreyas Ananthan, Zhijun Zhang, Kyle Hutchings, Peng Wang, Weiguo Chen, and Lin Chen
Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017,https://doi.org/10.5194/wes-2-229-2017, 2017
Short summary

Related subject area

Aerodynamics and hydrodynamics
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary
Vortex identification methods applied to wind turbine tip vortices
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022,https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Experimental study of the effect of a slat on the aerodynamic performance of a thick base airfoil
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584, https://doi.org/10.5194/wes-7-573-2022,https://doi.org/10.5194/wes-7-573-2022, 2022
Short summary

Cited articles

Abbott, I. H. and von Doenhoff, A. E.: Theory of Wing Sections: Including a Summary of Airfoil Data, Dover Publicatios, Inc., 586–587, ISBN 978-0486605869, 1959. a
Bak, C., Zahle, C., Bitsche, R., Kim, T., Yde, A., Henrikson, L. C., Hansen, M. H., Blasques, J. P. A. A., Guanaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, Tech. rep., DTU, https://findit.dtu.dk/en/catalog/2389486991 (last access: July 2020), 2013. a, b, c, d, e, f, g, h, i, j
Ceyhan, O., Pires, O., and Munduate, X.: AVATAR HIGH REYNOLDS NUMBER TESTS ON AIRFOIL DU00-W-212, Tech. rep., Zenodo [data set], https://doi.org/10.5281/zenodo.439827, 2017a. a, b, c, d, e, f, g, h, i, j
Ceyhan, O., Pires, O., Munduate, X., Sorensen, N., Reichstein, T., Schaffarczyk, A., Diakakis, K., Papadakis, G., Daniele, E., Schwarz, M., Lutz, T., and Prieto, R.: Summary of the Blind Test Compaign to predict the High Reynolds number performance of DU00-W-210 airfoil, in: AIAA Scitech, https://doi.org/10.2514/6.2017-0915, 2017b. a, b, c, d, e, f, g, h, i, j, k, l
Coder, J.: Further Development of the Amplification Factor Transport Transition Model for Aerodynamic Flows, in: AIAA Scitech, https://doi.org/10.2514/6.2019-0039, 2019. a, b, c, d, e
Download
Short summary
In RANS CFD, the eN-based method showed its superiority over local correlation-based transition models (LCTMs) coupled with the SST turbulence model for predicting transition behavior at high-Reynolds-number flows (3–15 million). We evaluated the performance of two LCTMs coupled with the SA turbulence model. As a result, the SA-based two-equation transition model showed a comparable performance with the eN-based method and better glide ratio (L/D) predictions than the SST-based model.