Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1625-2023
https://doi.org/10.5194/wes-8-1625-2023
Research article
 | 
27 Oct 2023
Research article |  | 27 Oct 2023

Forced-motion simulations of vortex-induced vibrations of wind turbine blades – a study of sensitivities

Christian Grinderslev, Felix Houtin-Mongrolle, Niels Nørmark Sørensen, Georg Raimund Pirrung, Pim Jacobs, Aqeel Ahmed, and Bastien Duboc

Related authors

Progress in the validation of rotor aerodynamic codes using field data
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023,https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Multiple limit cycle amplitudes in high-fidelity predictions of standstill wind turbine blade vibrations
Christian Grinderslev, Niels Nørmark Sørensen, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 2201–2213, https://doi.org/10.5194/wes-7-2201-2022,https://doi.org/10.5194/wes-7-2201-2022, 2022
Short summary
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021,https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Investigations of aerodynamic drag forces during structural blade testing using high-fidelity fluid–structure interaction
Christian Grinderslev, Federico Belloni, Sergio González Horcas, and Niels Nørmark Sørensen
Wind Energ. Sci., 5, 543–560, https://doi.org/10.5194/wes-5-543-2020,https://doi.org/10.5194/wes-5-543-2020, 2020
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Glauert's optimum rotor disk revisited – a calculus of variations solution and exact integrals for thrust and bending moment coefficients
Divya Tyagi and Sven Schmitz
Wind Energ. Sci., 10, 451–460, https://doi.org/10.5194/wes-10-451-2025,https://doi.org/10.5194/wes-10-451-2025, 2025
Short summary
Drop-size-dependent effects in leading-edge rain erosion and their impact on erosion-safe mode operation
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 10, 315–346, https://doi.org/10.5194/wes-10-315-2025,https://doi.org/10.5194/wes-10-315-2025, 2025
Short summary
Characterization of dynamic stall of a wind turbine airfoil with a high Reynolds number
Hye Rim Kim, Jasson A. Printezis, Jan Dominik Ahrens, Joerg R. Seume, and Lars Wein
Wind Energ. Sci., 10, 161–175, https://doi.org/10.5194/wes-10-161-2025,https://doi.org/10.5194/wes-10-161-2025, 2025
Short summary
Numerical analysis of transonic flow over the FFA-W3-211 wind turbine tip airfoil
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci., 10, 103–116, https://doi.org/10.5194/wes-10-103-2025,https://doi.org/10.5194/wes-10-103-2025, 2025
Short summary
Characterization of vortex-shedding regimes and lock-in response of a wind turbine airfoil with two high-fidelity simulation approaches
Ricardo Fernandez-Aldama, George Papadakis, Oscar Lopez-Garcia, Sergio Avila-Sanchez, Vasilis A. Riziotis, Alvaro Cuerva-Tejero, and Cristobal Gallego-Castillo
Wind Energ. Sci., 10, 17–39, https://doi.org/10.5194/wes-10-17-2025,https://doi.org/10.5194/wes-10-17-2025, 2025
Short summary

Cited articles

Bortolotti, P., Canet Tarrés, H., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., National Renewable Energy Laboratory (NREL), https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy-wp2-reference-wind-turbines (last access: 24 October 2023), 2019. a, b
CFX, A.: Modeling guide, Release 21R2, https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Modeling_Guide.pdf (last access: 24 October 2023), 2021. a, b
CFX-Solver, A.: Theory guide, Release 21R2, https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Theory_Guide.pdf (last access: 24 October 2023), 2021. a
DTU Computing Center: DTU Computing Center resources, https://doi.org/10.48714/DTU.HPC.0001, 2021.  a
Egorov, Y., Menter, F., Lechner, R., and Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. part 2: Application to complex flows, Flow, Turbulence and Combustion, 85, 139–165, https://doi.org/10.1007/s10494-010-9265-4, 2010. a, b
Download
Short summary
In standstill conditions wind turbines are at risk of vortex-induced vibrations (VIVs). VIVs can become large and lead to significant fatigue of the wind turbine structure over time. Thus it is important to have tools that can accurately compute this complex phenomenon. This paper studies the sensitivities to the chosen models of computational fluid dynamics (CFD) simulations when modelling VIVs and finds that much care is needed when setting up simulations, especially for specific flow angles.
Share
Altmetrics
Final-revised paper
Preprint