Articles | Volume 1, issue 2
https://doi.org/10.5194/wes-1-327-2016
https://doi.org/10.5194/wes-1-327-2016
Research article
 | 
16 Dec 2016
Research article |  | 16 Dec 2016

Actuator cylinder theory for multiple vertical axis wind turbines

Andrew Ning

Related authors

A comparison of eight optimization methods applied to a wind farm layout optimization problem
Jared J. Thomas, Nicholas F. Baker, Paul Malisani, Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, John Jasa, Christopher Bay, Federico Tilli, David Bieniek, Nick Robinson, Andrew P. J. Stanley, Wesley Holt, and Andrew Ning
Wind Energ. Sci., 8, 865–891, https://doi.org/10.5194/wes-8-865-2023,https://doi.org/10.5194/wes-8-865-2023, 2023
Short summary
Aeroelastic Tailoring of Wind Turbine Rotors Using High-Fidelity Multidisciplinary Design Optimization
Marco Mangano, Sicheng He, Yingqian Liao, Denis-Gabriel Caprace, Andrew Ning, and Joaquim R. R. A. Martins
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-10,https://doi.org/10.5194/wes-2023-10, 2023
Revised manuscript not accepted
Short summary
Gradient-Based Wind Farm Layout Optimization Results Compared with Large-Eddy Simulations
Jared J. Thomas, Christopher J. Bay, Andrew P. J. Stanley, and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-4,https://doi.org/10.5194/wes-2022-4, 2022
Revised manuscript not accepted
Short summary
A model to calculate fatigue damage caused by partial waking during wind farm optimization
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022,https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Massive simplification of the wind farm layout optimization problem
Andrew P. J. Stanley and Andrew Ning
Wind Energ. Sci., 4, 663–676, https://doi.org/10.5194/wes-4-663-2019,https://doi.org/10.5194/wes-4-663-2019, 2019
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Ahmadi-Baloutaki, M., Carriveau, R., and Ting, D. S.-K.: Performance of a vertical axis wind turbine in grid generated turbulence, Sustainable Energy Technologies and Assessments, 11, 178–185, https://doi.org/10.1016/j.seta.2014.12.007, 2015.
Araya, D. B., Craig, A. E., Kinzel, M., and Dabiri, J. O.: Low-order modeling of wind farm aerodynamics using leaky Rankine bodies, Journal of Renewable and Sustainable Energy, 6, 063118, https://doi.org/10.1063/1.4905127, 2014.
Bravo, R., Tullis, S., and Ziada, S.: Performance testing of a small vertical-axis wind turbine, in: Proceedings of the 21st Canadian Congress of Applied Mechanics (CANCAM07), 3–7 June 2007, Toronto, Canada, 2007.
Bremseth, J. and Duraisamy, K.: Computational analysis of vertical axis wind turbine arrays, Theor. Comp. Fluid Dyn., 30, 387–401, https://doi.org/10.1007/s00162-016-0384-y, 2016.
Buhl Jr., M. L.: A New Empirical Relationship between Thrust Coefficient and Induction Factor for the Turbulent Windmill State, National Renewable Energy Laboratory, Technical Report, NREL/TP-500-36834, 7 pp., 2005.
Download
Short summary
Wind turbines rarely operate in isolation but rather in close proximity within wind farms. Currently analysis methods are designed for analyzing turbines in isolation, or within a waked region. Actuator cylinder theory is extended to handle multiple vertical axis wind turbines in close proximity. We find good agreement in power predictions as compared to available higher-fidelity simulation data. The corresponding code may be useful for conceptual design and has been fully open-sourced.
Altmetrics
Final-revised paper
Preprint