Articles | Volume 2, issue 1
Wind Energ. Sci., 2, 175–187, 2017
https://doi.org/10.5194/wes-2-175-2017
Wind Energ. Sci., 2, 175–187, 2017
https://doi.org/10.5194/wes-2-175-2017
Research article
28 Mar 2017
Research article | 28 Mar 2017

Monitoring offshore wind farm power performance with SCADA data and an advanced wake model

Niko Mittelmeier et al.

Related authors

Determination of optimal wind turbine alignment into the wind and detection of alignment changes with SCADA data
Niko Mittelmeier and Martin Kühn
Wind Energ. Sci., 3, 395–408, https://doi.org/10.5194/wes-3-395-2018,https://doi.org/10.5194/wes-3-395-2018, 2018
Short summary
An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects
Niko Mittelmeier, Julian Allin, Tomas Blodau, Davide Trabucchi, Gerald Steinfeld, Andreas Rott, and Martin Kühn
Wind Energ. Sci., 2, 477–490, https://doi.org/10.5194/wes-2-477-2017,https://doi.org/10.5194/wes-2-477-2017, 2017
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Albers, A.: Efficient wind farm performance analysis, in: 7th German Wind Energy Conference, DEWEK, 20–21 October, Deutsche WindGuard Consulting GmbH, Wilhelmshaven, Germany, 2004a.
Albers, A.: Relative and Integral Wind Turbine Power Performance Evaluation, in: Proceedings of the European Wind Energy Conference and Exhibition, 22–25 November, London, UK, 2004b.
Albers, A., Klug, H., and Westermann, D.: Power performance verification, in: Proceedings of the European Wind Energy Conference, 657–660, 1–5 March, Nice, France, 1999.
Beck, H., Trujillo, J. J., Wolken-möhlmann, G., Gottschall, J., Schmidt, J., Peña, A., Gomes, V., Lange, B., Hasager, C., and Kühn, M.: Comparison of simulations of the far wake of alpha ventus against ship-based LiDAR measurements, in: RAVE Conference, 13–15 October, Bremerhaven, Germany, 2015.
Carvalho, H. and Guedes, R.: Wind Farm Power Performance Test, in: Scope of the IEC 61400-12-3, Wind Power Expo, Chicago, USA, 2009.
Download
Short summary
Efficient detection of wind turbines operating below their expected power output and immediate corrections help maximize asset value. The method presented estimates the environmental conditions from turbine states and uses pre-calculated power lookup tables from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output are an indication of underperformance. A demonstration of the method's ability to detect underperformance is given.