Articles | Volume 2, issue 1
https://doi.org/10.5194/wes-2-343-2017
https://doi.org/10.5194/wes-2-343-2017
Research article
 | 
30 Jun 2017
Research article |  | 30 Jun 2017

Modal properties and stability of bend–twist coupled wind turbine blades

Alexander R. Stäblein, Morten H. Hansen, and David R. Verelst

Related authors

Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parametrization in the Weather Research and Forecasting model
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024,https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Dynamic Modelling and Response of a Power Cable connected to a Floating Wind Turbine
David Robert Verelst, Rasmus Sode Lund, and Jean-Philippe Roques
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-24,https://doi.org/10.5194/wes-2024-24, 2024
Publication in WES not foreseen
Short summary
Extreme coherent gusts with direction change – probabilistic model, yaw control, and wind turbine loads
Ásta Hannesdóttir, David R. Verelst, and Albert M. Urbán
Wind Energ. Sci., 8, 231–245, https://doi.org/10.5194/wes-8-231-2023,https://doi.org/10.5194/wes-8-231-2023, 2023
Short summary
Redesign of an upwind rotor for a downwind configuration: design changes and cost evaluation
Gesine Wanke, Leonardo Bergami, Frederik Zahle, and David Robert Verelst
Wind Energ. Sci., 6, 203–220, https://doi.org/10.5194/wes-6-203-2021,https://doi.org/10.5194/wes-6-203-2021, 2021
Short summary
A surrogate model approach for associating wind farm load variations with turbine failures
Laura Schröder, Nikolay Krasimirov Dimitrov, and David Robert Verelst
Wind Energ. Sci., 5, 1007–1022, https://doi.org/10.5194/wes-5-1007-2020,https://doi.org/10.5194/wes-5-1007-2020, 2020
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Armanios, E. A. and Badir, A. M.: Free vibration analysis of anisotropic thin-walled closed-section beams, AIAA J., 33, 1905–1910, https://doi.org/10.2514/3.12744, 1995.
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind Turbine, Tech. Rep. DTU Wind Energy Report-I-0092, DTU Wind Energy, 2013.
Bathe, K.-J. and Bolourchi, S.: Large displacement analysis of three-dimensional beam structures, Int. J. Numer. Meth. Eng., 14, 961–986, https://doi.org/10.1002/nme.1620140703, 1979.
Blasques, J. P.: BECAS – A cross section analysis tool for anisotropic and inhomogeneous beam sections of arbitrary geometry, Tech. Rep. Ris-R-1785(EN), Ris National Laboratory for Sustainable Energy, 2011.
Bottasso, C. L., Campagnolo, F., Croce, A., and Tibaldi, C.: Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation, Wind Energy, 16, 1149–1166, https://doi.org/10.1002/we.1543, 2013.
Download
Short summary
Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry or from the anisotropic properties of the blade material. Bend–twist coupling can be utilised to reduce the fatigue loads of wind turbine blades. In this study the effects of material-based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated.
Altmetrics
Final-revised paper
Preprint