Articles | Volume 2, issue 1
Wind Energ. Sci., 2, 55–76, 2017
https://doi.org/10.5194/wes-2-55-2017
Wind Energ. Sci., 2, 55–76, 2017
https://doi.org/10.5194/wes-2-55-2017
Research article
09 Feb 2017
Research article | 09 Feb 2017

Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions

Jan Bartl and Lars Sætran

Related authors

Blind test comparison on the wake behind a yawed wind turbine
Franz Mühle, Jannik Schottler, Jan Bartl, Romain Futrzynski, Steve Evans, Luca Bernini, Paolo Schito, Martín Draper, Andrés Guggeri, Elektra Kleusberg, Dan S. Henningson, Michael Hölling, Joachim Peinke, Muyiwa S. Adaramola, and Lars Sætran
Wind Energ. Sci., 3, 883–903, https://doi.org/10.5194/wes-3-883-2018,https://doi.org/10.5194/wes-3-883-2018, 2018
Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines
Jan Bartl, Franz Mühle, and Lars Sætran
Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018,https://doi.org/10.5194/wes-3-489-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear
Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling
Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018,https://doi.org/10.5194/wes-3-329-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width
Jannik Schottler, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018,https://doi.org/10.5194/wes-3-257-2018, 2018
Short summary
Aerodynamic Performance of the NREL S826 Airfoil in Icing Conditions
Julie Krøgenes, Lovisa Brandrud, Richard Hann, Jan Bartl, Tania Bracchi, and Lars Sætran
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2017-39,https://doi.org/10.5194/wes-2017-39, 2017
Preprint withdrawn
Short summary

Related subject area

Aerodynamics and hydrodynamics
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary
Local correlation-based transition models for high-Reynolds-number wind-turbine airfoils
Yong Su Jung, Ganesh Vijayakumar, Shreyas Ananthan, and James Baeder
Wind Energ. Sci., 7, 603–622, https://doi.org/10.5194/wes-7-603-2022,https://doi.org/10.5194/wes-7-603-2022, 2022
Short summary
Vortex identification methods applied to wind turbine tip vortices
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022,https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Experimental study of the effect of a slat on the aerodynamic performance of a thick base airfoil
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584, https://doi.org/10.5194/wes-7-573-2022,https://doi.org/10.5194/wes-7-573-2022, 2022
Short summary

Cited articles

Adaramola, M. S. and Krogstad, P. Å.: Experimental investigation of wake effects on wind turbine performance, Renew. Energ., 36, 2078–2086, https://doi.org/10.1016/j.renene.2011.01.024, 2011.
Ainslie, J. F.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988.
Aksnes, N. Y.: Performance Characteristics of the NREL S826 Airfoil – An assessment of Re-independency and effect of inflow turbulence, Master's thesis NTNU, 2015.
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009.
Bartl, J. and Sætran, L.: Experimental testing of axial induction based control strategies for wake control and wind farm optimization, J. Phys. Conf. Ser. B, Wind, wakes, turbulence and wind farms, 753, 032035, https://doi.org/10.1088/1742-6596/753/3/032035, 2016.
Download
Short summary
As wind turbines extract energy from the wind, a wind field of reduced wind speed and increased turbulence is left behind for the downstream turbines. For the exact calculation of the annual energy production and lifetime of wind turbines, it is therefore of great importance to be able to accurately calculate this turbulent wake flow for different wind conditions. This paper compares different computational modeling approaches with flow measurements on model turbines in a wind tunnel.