Articles | Volume 3, issue 1
https://doi.org/10.5194/wes-3-149-2018
https://doi.org/10.5194/wes-3-149-2018
Research article
 | 
26 Mar 2018
Research article |  | 26 Mar 2018

Application of a Monte Carlo procedure for probabilistic fatigue design of floating offshore wind turbines

Kolja Müller and Po Wen Cheng

Related authors

Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
Moritz Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci., 9, 2175–2193, https://doi.org/10.5194/wes-9-2175-2024,https://doi.org/10.5194/wes-9-2175-2024, 2024
Short summary
Dynamic performance of a passively self-adjusting floating wind farm layout to increase the annual energy production
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024,https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
Identification of electro-mechanical interactions in wind turbines
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024,https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
A Comprehensive Design Methodology of Shared Mooring Line Configurations for Assessing Mooring Costs and Performances of Floating Offshore Wind Turbines
Qi Pan, Dexing Liu, Feng Guo, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-44,https://doi.org/10.5194/wes-2024-44, 2024
Revised manuscript under review for WES
Short summary
Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers
Wei Yu, Sheng Tao Zhou, Frank Lemmer, and Po Wen Cheng
Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024,https://doi.org/10.5194/wes-9-1053-2024, 2024
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

ANSYS AQWA: available at: https://www.ansys.com/de-de/products/structures/ansys-aqwa, last access: January 2018.
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine [Sound/Visual production (digital)], Danish Wind Power Research 2013, Fredericia, Denmark, 2013.
Bratley, P. and Fox, B.: Implementing Sobols Quasirandom Sequence Generator (Algorithm 659), ACM T. Math. Software, 14, 88–100, 2003.
Choe, Y., Byon, E., and Chen, N.: Importance Sampling for Reliability Evaluation With Stochastic Simulation Models, Technometrics, 57, 351–361, 2015.
Der Kiureghian, A. and Liu, P.-L.: Structural reliability under incomplete probability information, J. Eng. Mech., 112, 85–104, 1986.
Download
Short summary
An efficient and accurate Monte Carlo approach is presented to assess the lifetime fatigue loading on a floating offshore wind turbine accurately. This is typically challenging in simulation effort due to the many different combinations of relevant environmental conditions which need to be considered. The applied method uses quasi-random Sobol sequences and shows promising performance with respect to convergence and accuracy.
Altmetrics
Final-revised paper
Preprint