Articles | Volume 4, issue 3
Wind Energ. Sci., 4, 397–406, 2019
https://doi.org/10.5194/wes-4-397-2019
Wind Energ. Sci., 4, 397–406, 2019
https://doi.org/10.5194/wes-4-397-2019

Brief communication 11 Jul 2019

Brief communication | 11 Jul 2019

Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines

Pietro Bortolotti et al.

Related authors

Land-based wind turbines with flexible rail-transportable blades – Part 2: 3D finite element design optimization of the rotor blades
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022,https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Land-based wind turbines with flexible rail-transportable blades – Part 1: Conceptual design and aeroservoelastic performance
Pietro Bortolotti, Nick Johnson, Nikhar J. Abbas, Evan Anderson, Ernesto Camarena, and Joshua Paquette
Wind Energ. Sci., 6, 1277–1290, https://doi.org/10.5194/wes-6-1277-2021,https://doi.org/10.5194/wes-6-1277-2021, 2021
Short summary
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-56,https://doi.org/10.5194/wes-2021-56, 2021
Preprint under review for WES
Short summary
On the scaling of wind turbine rotors
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021,https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Comparison between upwind and downwind designs of a 10 MW wind turbine rotor
Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso
Wind Energ. Sci., 4, 115–125, https://doi.org/10.5194/wes-4-115-2019,https://doi.org/10.5194/wes-4-115-2019, 2019
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Land-based wind turbines with flexible rail-transportable blades – Part 2: 3D finite element design optimization of the rotor blades
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022,https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Local-thermal-gradient and large-scale-circulation impacts on turbine-height wind speed forecasting over the Columbia River Basin
Ye Liu, Yun Qian, and Larry K. Berg
Wind Energ. Sci., 7, 37–51, https://doi.org/10.5194/wes-7-37-2022,https://doi.org/10.5194/wes-7-37-2022, 2022
Short summary
Evaluation of the impact of active wake control techniques on ultimate loads for a 10 MW wind turbine
Alessandro Croce, Stefano Cacciola, and Luca Sartori
Wind Energ. Sci., 7, 1–17, https://doi.org/10.5194/wes-7-1-2022,https://doi.org/10.5194/wes-7-1-2022, 2022
Short summary
Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
Nicola Bodini, Weiming Hu, Mike Optis, Guido Cervone, and Stefano Alessandrini
Wind Energ. Sci., 6, 1363–1377, https://doi.org/10.5194/wes-6-1363-2021,https://doi.org/10.5194/wes-6-1363-2021, 2021
Short summary
What are the benefits of lidar-assisted control in the design of a wind turbine?
Helena Canet, Stefan Loew, and Carlo L. Bottasso
Wind Energ. Sci., 6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021,https://doi.org/10.5194/wes-6-1325-2021, 2021
Short summary

Cited articles

Abdallah, I., Natarajan, A., and Sørensen, J. D.: Impact of uncertainty in airfoil characteristics on wind turbine extreme loads, Renew. Energ., 75, 283–300, https://doi.org/10.1016/j.renene.2014.10.009, 2015. a
Adams, B. M., Bauman, L. E., Bohnhoff, W. J., Dalbey, K. R., Ebeida, M. S., Eddy, J. P., Eldred, M. S., Hough, P. D., Hu, K. T., Jakeman, J. D., Stephens, J. A., Swiler, L. P., Vigil, D. M., and Wildey, T. M.: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual, Sandia Technical Report SAND2014-4633, Updated November 2015 (Version 6.3), available at: https://dakota.sandia.gov (last access: December 2018), July 2014. a, b
Bauchau, O. A.: Flexible Multibody Dynamics, Mechanics and Its Applications, Springer, ISBN: 978-94-007-0335-3, 2011. a
Bortolotti, P., Bottasso, C. L., and Croce, A.: Combined preliminary–detailed design of wind turbines, Wind Energ. Sci., 1, 71–88, https://doi.org/10.5194/wes-1-71-2016, 2016. a
Download
Short summary
The paper studies the effects of uncertainties in aeroservoelastic wind turbine models. Uncertainties are associated with the wind inflow characteristics and the blade surface state, and they are propagated by means of two non-intrusive methods throughout the aeroservoelastic model of a large conceptual offshore wind turbine. Results are compared with a brute-force extensive Monte Carlo sampling to assess the convergence characteristics of the non-intrusive approaches.