Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 409–426, 2021
https://doi.org/10.5194/wes-6-409-2021

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 6, 409–426, 2021
https://doi.org/10.5194/wes-6-409-2021
Research article
15 Mar 2021
Research article | 15 Mar 2021

Low-Reynolds-number investigations on the ability of the strip of e-TellTale sensor to detect the flow features over wind turbine blade section: flow stall and reattachment dynamics

Antoine Soulier et al.

Related authors

High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary
High Reynolds number wind turbine blade equipped with root spoilers. Part II: Impact on energy production and turbine lifetime
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-23,https://doi.org/10.5194/wes-2022-23, 2022
Revised manuscript accepted for WES
Short summary
First characterization of a new perturbation system for gust generation: the chopper
Ingrid Neunaber and Caroline Braud
Wind Energ. Sci., 5, 759–773, https://doi.org/10.5194/wes-5-759-2020,https://doi.org/10.5194/wes-5-759-2020, 2020
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Aubrun, S., Garcia, E. T., Boquet, M., Coupiac, O., and Girard, N.: Wind turbine wake tracking and its correlations with wind turbine monitoring sensors. Preliminary results, J. Phys., 753, 032003, https://doi.org/10.1088/1742-6596/753/3/032003, 2016. a
Batlle, E. C., Pereira, R., and Kotsonis, M.: Airfoil Stall Hysteresis Control with DBD Plasma actuation, 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9–13 January 2017, 1–8, No. 19803, https://doi.org/10.2514/6.2017-1803, 2017. a
Bossanyi, E. A., Kumar, A., and Hugues-Salas, O.: Wind turbine control applications of turbine-mounted LIDAR, J. Phys., 555, 012011, https://doi.org/10.1088/1742-6596/555/1/012011, 2014. a
Braud, C. and Liberzon, A.: Real-time processing methods to characterize streamwise vortices, J. Wind Eng. Ind. Aerod., 179, 14–25, https://doi.org/10.1016/j.jweia.2018.05.006, 2018. a
Cahuzac, A., Boudet, J., Borgnat, P., and Lévêque, E.: Smoothing algorithms for mean-flow extraction in large-eddy simulation of complex turbulent flows, Phys. Fluids, 22, 125104, https://doi.org/10.1063/1.3490063, 2010. a
Download
Short summary
Monitoring the flow features over wind turbine blades is a challenging task that has become more and more crucial to monitor and/or operate wind turbine blades. This paper demonstrates the ability of an innovative sensor to detect these features over wind turbine blades. The spatiotemporal description of the flow over the surface has been measured over an oscillating blade section and the strip displacement was compared, showing the ability of the sensor to detect stall.