Articles | Volume 6, issue 2
https://doi.org/10.5194/wes-6-585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers
Stefano Macrí
Univ. Orléans, INSA-CVL, PRISME EA4229, 45072 Orléans, France
Sandrine Aubrun
CORRESPONDING AUTHOR
Ecole Centrale de Nantes, LHEEA, 1 rue de la Noë, 44321 Nantes, France
Annie Leroy
Univ. Orléans, INSA-CVL, PRISME EA4229, 45072 Orléans, France
Centre de Recherche de l’École de l’Air, B.A. 701, 13661 Salon-de-Provence, France
Nicolas Girard
Engie Digital, Le Monolithe, 59 rue Denuzière, 69285 Lyon, France
Related authors
No articles found.
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attié, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci., 10, 1929–1942, https://doi.org/10.5194/wes-10-1929-2025, https://doi.org/10.5194/wes-10-1929-2025, 2025
Short summary
Short summary
A 3-year meteorological dataset from an operational wind farm of six 2 MW (megawatt) turbines has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Antonin Hubert, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 10, 1351–1368, https://doi.org/10.5194/wes-10-1351-2025, https://doi.org/10.5194/wes-10-1351-2025, 2025
Short summary
Short summary
The paper aims to study the far wake of a wind turbine under realistic inflow conditions subjected to harmonic floating motions. The present work shows that phase averaging enables the observation of the coherent spatiotemporal wake behaviour in response to the harmonic motions, contrary to previous studies with time averaging, and that the resulting variations in the chosen metrics exhibit an intensity higher than those expected when using basic quasi-steady-state approaches.
Dimas Alejandro Barile, Roberto Sosa, Sandrine Aubrun, and Alejandro Daniel Otero
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-2, https://doi.org/10.5194/wes-2025-2, 2025
Manuscript not accepted for further review
Short summary
Short summary
This work sets out a novel methodology for the CFD simulation of an ABL wind tunnel flow. Initially, the scheme is well validated against experimental measurements, and then it is applied to the study of a floating offshore wind turbine model under surge motion with varying turbulence intensities and motion frequencies. New insights are gained related to wake recovery of a wind turbine under surge motion, as certain frequency cases exhibit a distinctive behaviour regarding coherence structures.
Benyamin Schliffke, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 9, 519–532, https://doi.org/10.5194/wes-9-519-2024, https://doi.org/10.5194/wes-9-519-2024, 2024
Short summary
Short summary
This paper studies the consequences of floater motions for the wake properties of a floating wind turbine. Since wake interactions are responsible for power production loss in wind farms, it is important that we know whether the tools that are used to predict this production loss need to be upgraded to take into account these aspects. Our wind tunnel study shows that the signature of harmonic floating motions can be observed in the far wake of a wind turbine, when motions have strong amplitudes.
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021, https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Short summary
Wake steering is a wind farm control strategy in which upstream wind turbines are misaligned with the wind to deflect their low-velocity wakes away from downstream turbines, increasing overall power production. Here, we present results from a two-turbine wake-steering experiment at a commercial wind plant. By analyzing the wind speed dependence of wake steering, we find that the energy gained tends to increase for higher wind speeds because of both the wind conditions and turbine operation.
Cited articles
Aubrun, S., Loyer, S., Hancock, P., and Hayden, P.: Wind turbine wake
properties: Comparison between a non-rotating simplified wind turbine model
and a rotating model, J. Wind Eng. Ind. Aerod., 120, 1–8, 2013. a
Aubrun, S., Bastankhah, M., Cal, R. B., Conan, B., Hearst, R. J., Hoek, D.,
Hölling, M., Huang, M., Hur, C., Karlsen, B., Neunaber, I., Obligado, M., Peinke, J., Percin, M., Saetran, L., Schito, P., Schliffke, B., Sims-Williams, D., Uzol, O., Vinnes, M. K., and Zasso A.: Round-robin tests
of porous disc models, J. Phys.-Conf Ser., 1256, 012004, https://doi.org/10.1088/1742-6596/1256/1/012004, 2019. a
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine
wakes, Renew. Energ., 70, 116–123, 2014. a
Benedict, L. and Gould, R.: Towards better uncertainty estimates for turbulence
statistics, Exp. Fluids, 22, 129–136, 1996. a
Bossanyi, E.: Combining induction control and wake steering for wind farm
energy and fatigue loads optimisation, in: J. Phys.-Conf. Ser, 1037, 032011, https://doi.org/10.1088/1742-6596/1037/3/032011, 2018. a
Bossanyi, E. and Jorge, T.: Optimisation of wind plant sector management for
energy and loads, in: 2016 European Control Conference (ECC), 922–927, https://doi.org/10.1109/ECC.2016.7810407, 2016. a
Cannon, S., Champagne, F., and Glezer, A.: Observations of large-scale
structures in wakes behind axisymmetric bodies, Exp. Fluids, 14,
447–450, 1993. a
Coudou, N., Moens, M., Marichal, Y., Van Beeck, J., Bricteux, L., and
Chatelain, P.: Development of wake meandering detection algorithms and their
application to large eddy simulations of an isolated wind turbine and a wind
farm, J. Phys.-Conf. Ser., 1037, 072024, https://doi.org/10.1088/1742-6596/1037/7/072024, 2018. a
Espana, G.: Étude expérimentale du sillage lointain des éoliennes
à axe horizontal au moyen d'une modélisation simplifiée en couche
limite atmosphérique, PhD thesis, Université d'Orléans, 2009. a
Fleming, P., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z., Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of wake steering at an offshore wind farm, Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017, 2017. a
Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020. a
Garcia, E. T., Aubrun, S., Coupiac, O., Girard, N., and Boquet, M.: Statistical
characteristics of interacting wind turbine wakes from a 7-month LiDAR
measurement campaign, Renew. Energ., 130, 1–11, 2019. a
Gebraad, P., Thomas, J. J., Ning, A., Fleming, P., and Dykes, K.: Maximization
of the annual energy production of wind power plants by optimization of
layout and yaw-based wake control, Wind Energy, 20, 97–107, 2017. a
Grant, I., Parkin, P., and Wang, X.: Optical vortex tracking studies of a
horizontal axis wind turbine in yaw using laser-sheet, flow visualisation,
Exp. Fluids, 23, 513–519, 1997. a
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and
Meneveau, C.: Wake structure in actuator disk models of wind turbines in yaw
under uniform inflow conditions, J. Renew. Sustain. Energ.,
8, 043301, https://doi.org/10.1063/1.4955091, 2016. a, b, c
Howland, M. F., González, C. M., Martínez, J. J. P., Quesada, J. B.,
Larranaga, F. P., Yadav, N. K., Chawla, J. S., and Dabiri, J. O.: Influence
of atmospheric conditions on the power production of utility-scale wind
turbines in yaw misalignment, J. Renew. Sustain. Energ.,
12, 063307, https://doi.org/10.1063/5.00237462020. a
Keck, R., Mikkelsen, R., Troldborg, N., de Maré, M., and Hansen, K.: Synthetic
atmospheric turbulence and wind shear in large eddy simulations of wind
turbine wakes, Wind Energy, 17, 1247–1267, https://doi.org/10.1002/we.1631, 2014. a
Lignarolo, L., Ragni, D., Ferreira, C., and Van Bussel, G.: Experimental
comparison of a wind-turbine and of an actuator-disc near wake, J.
Renew. Sustain. Energ., 8, 023301, https://doi.org/10.1063/1.4941926, 2016. a
Machefaux, E., Larsen, G. C., Troldborg, N., Gaunaa, M., and Rettenmeier, A.:
Empirical modeling of single-wake advection and expansion using full-scale
pulsed lidar-based measurements, Wind Energy, 18, 2085–2103, 2015. a
Machielse, L., Barth, S., Bot, E., Hendriks, H., and Schepers, J.: Evaluation
of “Heat and Flux” Farm Control, Final Report, Tech. rep., ECN-E–07-105,
2008. a
Macrì, S., Coupiac, O., Girard, N., Leroy, A., and Aubrun, S.:
Experimental analysis of the wake dynamics of a modelled wind turbine during
yaw manoeuvres, J. Phys.-Conf. Ser., 1037,
072035, https://doi.org/10.1088/1742-6596/1037/7/072035, 2018. a, b, c
Macrì, S., Duc, T., Leroy, A., Girard, N., and Aubrun, S.: Experimental
analysis of time delays in wind turbine wake interactions, J. Phys.-Conf. Ser., 1618, 062058, https://doi.org/10.1088/1742-6596/1618/6/062058, 2020. a, b
Pao, L. Y. and Johnson, K. E.: A tutorial on the dynamics and control of wind
turbines and wind farms, in: 2009 American Control Conference,
2076–2089, 2009. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-turbine and
wind-farm flows: a review, Bound.-Lay. Meteorol., 174, 1–59, 2020. a
Sanderse, B.: Aerodynamics of wind turbine wakes-literature review, Technical report E-09-016, Energy research Centre of the Netherlands, 2009. a
Schottler, J., Mühle, F., Bartl, J., Peinke, J., Adaramola, M. S.,
Sætran, L., and Hölling, M.: Comparative study on the wake deflection
behind yawed wind turbine models, J. Phys.-Conf. Ser., 854, 012032, doi::10.1088/1742-6596/854/1/012032, 2017. a
Schottler, J., Bartl, J., Mühle, F., Sætran, L., Peinke, J., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width, Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018, 2018. a
Trujillo, J., Bingöl, F., Larsen, G., Mann, J., and Kühn, M.: Light detection
and ranging measurements of wake dynamics. Part II: two-dimensional scanning,
Wind Energy, 14, 61–75, https://doi.org/10.1002/we.402, 2011. a
Van Gent, P., Michaelis, D., Van Oudheusden, B., Weiss, P.-É., de Kat, R.,
Laskari, A., Jeon, Y. J., David, L., Schanz, D., Huhn, F., Gesemann, S., Novara, M., McPhaden, C., Neeteson, N. J., Rival, D. E., Schneiders, J. F. G., and Schrijer, F. F. J.:
Comparative assessment of pressure field reconstructions from particle image
velocimetry measurements and Lagrangian particle tracking, Exp.
Fluids, 58, 33, https://doi.org/10.1007/s00348-017-2324-z, 2017. a
Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study, Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, 2016. a, b, c
Wagenaar, J., Machielse, L., and Schepers, J.: Controlling wind in ECN’s
scaled wind farm, Proc. Europe Premier Wind Energy Event, Copenhagen, Denmark, 16-19 April 2012, 685–694, 2012. a
Yu, W., Hong, V., Ferreira, C., and van Kuik, G.: Experimental analysis on the
dynamic wake of an actuator disc undergoing transient loads, Exp.
Fluids, 58, 149, https://doi.org/10.1007/s00348-017-2432-9, 2017. a
Short summary
This paper investigates the effect of misaligning a wind turbine on its wake deviation response and on the global load variation of a downstream wind turbine during a positive and negative yaw maneuver, representing a misalignment–realignment scenario. Yaw maneuvers could be used to voluntarily misalign wind turbines when wake steering control is targeted. The aim of this wind farm control strategy is to optimize the overall production of the wind farm and its lifetime.
This paper investigates the effect of misaligning a wind turbine on its wake deviation response...
Altmetrics
Final-revised paper
Preprint