Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1341-2022
https://doi.org/10.5194/wes-7-1341-2022
Research article
 | 
05 Jul 2022
Research article |  | 05 Jul 2022

How should the lift and drag forces be calculated from 2-D airfoil data for dihedral or coned wind turbine blades?

Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas

Related authors

Atmospheric rotating rig testing of a swept blade tip and comparison with multi-fidelity aeroelastic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022,https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
A computationally efficient engineering aerodynamic model for swept wind turbine blades
Ang Li, Georg Raimund Pirrung, Mac Gaunaa, Helge Aagaard Madsen, and Sergio González Horcas
Wind Energ. Sci., 7, 129–160, https://doi.org/10.5194/wes-7-129-2022,https://doi.org/10.5194/wes-7-129-2022, 2022
Short summary
A computationally efficient engineering aerodynamic model for non-planar wind turbine rotors
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 75–104, https://doi.org/10.5194/wes-7-75-2022,https://doi.org/10.5194/wes-7-75-2022, 2022
Short summary
Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact
Helge Aagaard Madsen, Torben Juul Larsen, Georg Raimund Pirrung, Ang Li, and Frederik Zahle
Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020,https://doi.org/10.5194/wes-5-1-2020, 2020
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Aerodynamic model comparison for an X-shaped vertical-axis wind turbine
Adhyanth Giri Ajay, Laurence Morgan, Yan Wu, David Bretos, Aurelio Cascales, Oscar Pires, and Carlos Ferreira
Wind Energ. Sci., 9, 453–470, https://doi.org/10.5194/wes-9-453-2024,https://doi.org/10.5194/wes-9-453-2024, 2024
Short summary
Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms
Bruno A. Roccia, Luis R. Ceballos, Marcos L. Verstraete, and Cristian G. Gebhardt
Wind Energ. Sci., 9, 385–416, https://doi.org/10.5194/wes-9-385-2024,https://doi.org/10.5194/wes-9-385-2024, 2024
Short summary
An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
Federico Taruffi, Felipe Novais, and Axelle Viré
Wind Energ. Sci., 9, 343–358, https://doi.org/10.5194/wes-9-343-2024,https://doi.org/10.5194/wes-9-343-2024, 2024
Short summary
Developing a digital twin framework for wind tunnel testing: validation of turbulent inflow and airfoil load applications
Rishabh Mishra, Emmanuel Guilmineau, Ingrid Neunaber, and Caroline Braud
Wind Energ. Sci., 9, 235–252, https://doi.org/10.5194/wes-9-235-2024,https://doi.org/10.5194/wes-9-235-2024, 2024
Short summary
Influence of rotor blade flexibility on the near-wake behavior of the NREL 5 MW wind turbine
Leo Höning, Laura J. Lukassen, Bernhard Stoevesandt, and Iván Herráez
Wind Energ. Sci., 9, 203–218, https://doi.org/10.5194/wes-9-203-2024,https://doi.org/10.5194/wes-9-203-2024, 2024
Short summary

Cited articles

Bergami, L. and Gaunaa, M.: ATEFlap Aerodynamic Model, a dynamic stall model including the effects of trailing edge flap deflection, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, ISBN 8755039340, 9788755039346, 2012. a
Bortolotti, P., Tarrés, H. C., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., National Renewable Energy Laboratory (NREL), https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy-wp2-reference-wind-turbines (last access: 23 November 2021), 2019. a, b, c
Buhl, T., Gaunaa, M., and Bak, C.: Potential load reduction using airfoils with variable trailing edge geometry, J. Sol. Energ.-T. ASME, 127, 503–516, https://doi.org/10.1115/1.2037094, 2005. a
Gaunaa, M.: Unsteady two-dimensional potential-flow model for thin variable geometry airfoils, Wind Energy, 13, 167–192, https://doi.org/10.1002/we.377, 2010. a, b, c, d
Hansen, M. H., Gaunaa, M., and Madsen, H. A.: A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations, Risø-R-1354, Roskilde, Denmark, ISBN 87-550-3090-4, https://orbit.dtu.dk/files/7711084/ris_r_1354.pdf (last access: 23 November 2021), 2004. a, b, c, d
Download
Short summary
A consistent method of using two-dimensional airfoil data when using generalized lifting-line methods for the aerodynamic load calculation of non-planar horizontal-axis wind turbines is described. The important conclusions from the unsteady two-dimensional airfoil aerodynamics are highlighted. The impact of using a simplified approach instead of using the full model on the prediction of the aerodynamic performance of non-planar rotors is shown numerically for different aerodynamic models.
Altmetrics
Final-revised paper
Preprint