Articles | Volume 1, issue 1
Wind Energ. Sci., 1, 71–88, 2016
https://doi.org/10.5194/wes-1-71-2016
Wind Energ. Sci., 1, 71–88, 2016
https://doi.org/10.5194/wes-1-71-2016
Research article
30 May 2016
Research article | 30 May 2016

Combined preliminary–detailed design of wind turbines

Pietro Bortolotti et al.

Related authors

Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Land-based wind turbines with flexible rail-transportable blades – Part 2: 3D finite element design optimization of the rotor blades
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022,https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Land-based wind turbines with flexible rail-transportable blades – Part 1: Conceptual design and aeroservoelastic performance
Pietro Bortolotti, Nick Johnson, Nikhar J. Abbas, Evan Anderson, Ernesto Camarena, and Joshua Paquette
Wind Energ. Sci., 6, 1277–1290, https://doi.org/10.5194/wes-6-1277-2021,https://doi.org/10.5194/wes-6-1277-2021, 2021
Short summary
On the scaling of wind turbine rotors
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021,https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines
Pietro Bortolotti, Helena Canet, Carlo L. Bottasso, and Jaikumar Loganathan
Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019,https://doi.org/10.5194/wes-4-397-2019, 2019
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Ashuri, T., Zaaijer, M. B., Martins, J. R. R. A., van Bussel, G. J. W., and van Kuik, G. A. M.: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy, Renew. Energ., 68, 893–905 https://doi.org/10.1016/j.renene.2014.02.045, 2014.
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Andersen, P. B., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW reference wind turbine, DTU Wind Energy Report-I-0092, July, 2013.
Bauchau, O. A., Epple, A., and Bottasso, C. L.: Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations, J. Comput. Nonlin. Dyn., 4, 021007, https://doi.org/10.1115/1.3079826, 2009.
Bauchau, O. A., Bottasso, C. L., and Trainelli, L.: Robust integration schemes for flexible multibody systems, Comput. Meth. Appl. Mech. Eng., 192, 395–420, https://doi.org/10.1016/S0045-7825(02)00519-4, 2003.
Bauchau, O. A.: Flexible Multibody Dynamics, in: Solid Mechanics and its Applications, Springer Netherlands, ISBN:978-94-007-0334-6, 2011.
Download
Short summary
The paper presents a new method to conduct the holistic optimization of a wind turbine. The proposed approach allows one to define the rotor radius and tower height, while simultaneously performing the detailed sizing of rotor and tower. For the rotor, the procedures perform simultaneously the design both from the aerodynamic and structural points of view. The overall optimization seeks a minimum for the cost of energy, while accounting for a wide range of user-defined design constraints.