Articles | Volume 1, issue 2
Wind Energ. Sci., 1, 89–100, 2016
Wind Energ. Sci., 1, 89–100, 2016
Research article
12 Jul 2016
Research article | 12 Jul 2016

Detailed analysis of the blade root flow of a horizontal axis wind turbine

Iván Herráez et al.

Related authors

Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography
Dominik Traphan, Iván Herráez, Peter Meinlschmidt, Friedrich Schlüter, Joachim Peinke, and Gerd Gülker
Wind Energ. Sci., 3, 639–650,,, 2018
Short summary
Extraction of the wake induction and angle of attack on rotating wind turbine blades from PIV and CFD results
Iván Herráez, Elia Daniele, and J. Gerard Schepers
Wind Energ. Sci., 3, 1–9,,, 2018
Short summary

Related subject area

Aerodynamics and hydrodynamics
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696,,, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657,,, 2022
Short summary
Local correlation-based transition models for high-Reynolds-number wind-turbine airfoils
Yong Su Jung, Ganesh Vijayakumar, Shreyas Ananthan, and James Baeder
Wind Energ. Sci., 7, 603–622,,, 2022
Short summary
Vortex identification methods applied to wind turbine tip vortices
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602,,, 2022
Short summary
Experimental study of the effect of a slat on the aerodynamic performance of a thick base airfoil
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584,,, 2022
Short summary

Cited articles

Akay, B., Micallef, D., Ferreira, C. J., and van Bussel, G.: Effects of geometry and tip speed ratio on the HAWT blade's root flow, in: The Science of Making Torque from Wind 2012, Oldenburg, Germany, J. Phys. Conf. Ser., 555, 012002,, 2012.
Akay, B., Ragni, D., Simão Ferreira, C., and van Bussel, G.: Experimental investigation of the root flow in a horizontal axis wind turbine, Wind Energy, 17, 1093–1109,, 2014.
Bak, C., Johansen, J., and Andersen, P.: Three-dimensional corrections of airfoil characteristics based on pressure distributions, in: European Wind Energy Conference Scientific Proceedings, 27 February–2 March 2006, Athens, Greece, 2006.
Bechmann, A., Sørensen, N. N., and Zahle, F.: CFD simulations of the MEXICO rotor, Wind Energy, 14, 677–689,, 2011.
Breton, S.-P., Coton, F. N., and Moe, G.: A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data, Wind Energy, 11, 459–482,, 2008.
Short summary
The flow in the blade root region of horizontal axis wind turbines is highly three-dimensional. Furthermore, it is influenced by the presence of strong trailing vortices. In this work we study the complex root flow by means of experiments and numerical simulations. The simulations are shown to be reliable at predicting the main flow features of the rotor blades. Additionally, new insight into the physical mechanisms governing the blade root aerodynamics is given.