Articles | Volume 6, issue 4
https://doi.org/10.5194/wes-6-997-2021
https://doi.org/10.5194/wes-6-997-2021
Research article
 | 
23 Jul 2021
Research article |  | 23 Jul 2021

Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data

Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen

Related authors

Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech., 18, 4949–4968, https://doi.org/10.5194/amt-18-4949-2025,https://doi.org/10.5194/amt-18-4949-2025, 2025
Short summary
The impact of far-reaching offshore cluster wakes on wind turbine fatigue loads
Arjun Anantharaman, Jörge Schneemann, Frauke Theuer, Laurent Beaudet, Valentin Bernard, Paul Deglaire, and Martin Kühn
Wind Energ. Sci., 10, 1849–1867, https://doi.org/10.5194/wes-10-1849-2025,https://doi.org/10.5194/wes-10-1849-2025, 2025
Short summary
Experimental investigation of wind turbine controllers for the Hybrid-Lambda Rotor
Daniel Ribnitzky, Vlaho Petrovic, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-143,https://doi.org/10.5194/wes-2025-143, 2025
Preprint under review for WES
Short summary
The impact of low-level jets on the power generated by offshore wind turbines
Johannes Paulsen, Jörge Schneemann, Gerald Steinfeld, Frauke Theuer, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-118,https://doi.org/10.5194/wes-2025-118, 2025
Preprint under review for WES
Short summary
A scaling methodology for the Hybrid-Lambda Rotor – characterization and validation in wind tunnel experiments
Daniel Ribnitzky, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 10, 1329–1349, https://doi.org/10.5194/wes-10-1329-2025,https://doi.org/10.5194/wes-10-1329-2025, 2025
Short summary

Cited articles

Andersen, S. J., Sørensen, J. N., and Mikkelsen, R. F.: Turbulence and entrainment length scales in large wind farms, Philos. T. Roy. Soc. A, 375, 20160107, https://doi.org/10.1098/rsta.2016.0107, 2017. a
Bossuyt, J., Howland, M. F., Meneveau, C., and Meyers, J.: Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel, Exp. Fluids, 58, 1–17, https://doi.org/10.1007/s00348-016-2278-6, 2017a. a, b, c, d, e, f
Bossuyt, J., Meneveau, C., and Meyers, J.: Wind farm power fluctuations and spatial sampling of turbulent boundary layers, J. Fluid Mech., 823, 329–344, https://doi.org/10.1017/jfm.2017.328, 2017b. a, b, c
Braun, T., Waechter, M., Peinke, J., and Guhr, T.: Correlated power time series of individual wind turbines: A data driven model approach, J. Renew. Sustain. Ener., 12, 023301, https://doi.org/10.1063/1.5139039, 2020. a
Bromm, M., Rott, A., Beck, H., Vollmer, L., Steinfeld, G., and Kühn, M.: Field investigation on the influence of yaw misalignment on the propagation of wind turbine wakes, Wind Energ., 21, 1011–1028, https://doi.org/10.1002/we.2210, 2018. a, b
Download
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Share
Altmetrics
Final-revised paper
Preprint