Articles | Volume 6, issue 4
https://doi.org/10.5194/wes-6-997-2021
https://doi.org/10.5194/wes-6-997-2021
Research article
 | 
23 Jul 2021
Research article |  | 23 Jul 2021

Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data

Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen

Related authors

Dynamic induction control for mitigation of wake-induced power losses: a wind tunnel study under different inflow conditions
Manuel Alejandro Zúñiga Inestroza, Paul Hulsman, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-171,https://doi.org/10.5194/wes-2024-171, 2025
Preprint under review for WES
Short summary
Enhancing minute-scale lidar-based power forecasts of offshore wind farms towards an operational use
Frauke Theuer, Janna Kristina Seifert, Jörge Schneemann, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-141,https://doi.org/10.5194/wes-2024-141, 2024
Preprint under review for WES
Short summary
A scaling methodology for the Hybrid-Lambda Rotor – Characterization and validation in wind tunnel experiments
Daniel Ribnitzky, Vlaho Petrovic, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-168,https://doi.org/10.5194/wes-2024-168, 2024
Preprint under review for WES
Short summary
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Hybrid-Lambda: a low-specific-rating rotor concept for offshore wind turbines
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024,https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Andersen, S. J., Sørensen, J. N., and Mikkelsen, R. F.: Turbulence and entrainment length scales in large wind farms, Philos. T. Roy. Soc. A, 375, 20160107, https://doi.org/10.1098/rsta.2016.0107, 2017. a
Bossuyt, J., Howland, M. F., Meneveau, C., and Meyers, J.: Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel, Exp. Fluids, 58, 1–17, https://doi.org/10.1007/s00348-016-2278-6, 2017a. a, b, c, d, e, f
Bossuyt, J., Meneveau, C., and Meyers, J.: Wind farm power fluctuations and spatial sampling of turbulent boundary layers, J. Fluid Mech., 823, 329–344, https://doi.org/10.1017/jfm.2017.328, 2017b. a, b, c
Braun, T., Waechter, M., Peinke, J., and Guhr, T.: Correlated power time series of individual wind turbines: A data driven model approach, J. Renew. Sustain. Ener., 12, 023301, https://doi.org/10.1063/1.5139039, 2020. a
Bromm, M., Rott, A., Beck, H., Vollmer, L., Steinfeld, G., and Kühn, M.: Field investigation on the influence of yaw misalignment on the propagation of wind turbine wakes, Wind Energ., 21, 1011–1028, https://doi.org/10.1002/we.2210, 2018. a, b
Download
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Altmetrics
Final-revised paper
Preprint