Articles | Volume 3, issue 2
https://doi.org/10.5194/wes-3-883-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-3-883-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Blind test comparison on the wake behind a yawed wind turbine
Franz Mühle
CORRESPONDING AUTHOR
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
Jannik Schottler
ForWind – Center for Wind Energy, Institute of Physics, University of Oldenburg, Oldenburg, Germany
Jan Bartl
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
Romain Futrzynski
Siemens PLM Software, London, UK
Steve Evans
Siemens PLM Software, London, UK
Luca Bernini
Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
Paolo Schito
Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
Martín Draper
Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
Andrés Guggeri
Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
Elektra Kleusberg
Linné FLOW Centre and Swedish e-Science Research Centre (SeRC), Department of Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
Dan S. Henningson
Linné FLOW Centre and Swedish e-Science Research Centre (SeRC), Department of Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
Michael Hölling
ForWind – Center for Wind Energy, Institute of Physics, University of Oldenburg, Oldenburg, Germany
Joachim Peinke
ForWind – Center for Wind Energy, Institute of Physics, University of Oldenburg, Oldenburg, Germany
Fraunhofer IWES, Oldenburg, Germany
Muyiwa S. Adaramola
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
Lars Sætran
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
Related authors
Jan Bartl, Franz Mühle, and Lars Sætran
Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, https://doi.org/10.5194/wes-3-489-2018, 2018
Short summary
Short summary
Our experimental wind tunnel study on a pair of model wind turbines demonstrates a significant potential of turbine yaw angle control for the combined optimization of turbine power and rotor loads. Depending on the turbines' relative positions to the incoming wind, a combined power increase and individual rotor load reduction can be achieved by operating the turbine rotors slightly misaligned with the main wind direction (i.e., at a certain yaw angle).
Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling
Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, https://doi.org/10.5194/wes-3-329-2018, 2018
Short summary
Short summary
Wake steering by yawing a wind turbine offers great potential to increase the wind farm power production. A model scale experiment in a controlled wind tunnel environment has been performed to map the wake flow's complex velocity distribution for different inflow conditions. A non-uniform sheared inflow was observed to affect the wake flow only insignificantly. The level of turbulent velocity fluctuations in the inflow, however, influenced the wake's velocity distribution to a higher degree.
Jannik Schottler, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018, https://doi.org/10.5194/wes-3-257-2018, 2018
Short summary
Short summary
In this work, the wake flows behind two different model wind turbines were investigated in wind tunnel experiments user laser Doppler anemometry. It was found that the width of the wake flow is significantly dependent on the quantities examined, becoming much wider when taking higher-order statistics into account. This effect is stable against yaw misalignment and thus affects not only wind farm layout optimizations but also the applicability of active wake steering methods.
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-32, https://doi.org/10.5194/wes-2024-32, 2024
Preprint under review for WES
Short summary
Short summary
Considerably large and unexpected load events are measured on operating wind turbines, but they are not predicted by numerical simulations. As a possible explanation, we define, measure, and characterize the statistics of periods of constant wind speed. Additional comparisons to synthetic and pure turbulent data suggest that such events are not intrinsic to small-scale turbulence and are not accurately described by current standard models of the wind.
Christian Wiedemann, Hendrik Bette, Matthias Wächter, Jan A. Freund, Thomas Guhr, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-52, https://doi.org/10.5194/wes-2024-52, 2024
Preprint under review for WES
Short summary
Short summary
This study utilizes a method to analyze power conversion dynamics across different operational states, addressing non-stationarity with a correlation matrix algorithm. Findings reveal distinct dynamics for each state, emphasizing their impact on system behavior and offering a solution to hysteresis effects in power conversion dynamics.
Zhaoyu Zhang, Feng Guo, David Schlipf, Paolo Schito, and Alberto Zasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-162, https://doi.org/10.5194/wes-2023-162, 2024
Preprint withdrawn
Short summary
Short summary
This paper aims to analyse the uncertainty in wind direction estimation of LIDAR and to improve the estimation accuracy. Findings demonstrate that this LIDAR estimation method is insufficient to supervise the turbine yaw control system in terms of both accuracy and timeliness. Future research should apply more advanced wind flow models to explore more accurate wind field reconstruction methods.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022, https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Thales Fava, Mikaela Lokatt, Niels Sørensen, Frederik Zahle, Ardeshir Hanifi, and Dan Henningson
Wind Energ. Sci., 6, 715–736, https://doi.org/10.5194/wes-6-715-2021, https://doi.org/10.5194/wes-6-715-2021, 2021
Short summary
Short summary
This work develops a simplified framework to predict transition to turbulence on wind-turbine blades. The model is based on the boundary-layer and parabolized stability equations, including rotation and three-dimensionality effects. We show that these effects may promote transition through highly oblique Tollmien–Schlichting (TS) or crossflow modes at low radii, and they should be considered for a correct transition prediction. At high radii, transition tends to occur through 2D TS modes.
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Christian Oliver Paschereit, and Kilian Oberleithner
Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021, https://doi.org/10.5194/wes-6-221-2021, 2021
Short summary
Short summary
This paper presents two methods on how to estimate the lift force that is created by a wing. These methods were experimentally assessed in a wind tunnel. Furthermore, an active trailing-edge flap, as seen on airplanes for example, is used to alleviate fluctuating loads that are created within the employed wind tunnel. Thereby, an active flow control device that can potentially serve on wind turbines to lower fatigue or lower the material used for the blades is examined.
Khaled Yassin, Hassan Kassem, Bernhard Stoevesandt, Thomas Klemme, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-3, https://doi.org/10.5194/wes-2021-3, 2021
Revised manuscript not accepted
Short summary
Short summary
When ice forms on wind turbine blades, the smooth surface of the blade becomes rough which changes its aerodynamic performance. So, it is very important to know how to simulate this rough surface since most CFD simulations depend on assuming a smooth surface. This article compares different mathematical models specialized in simulating rough surfaces with results of real ice profiles. The study presents the most accurate model and recommends using it in future airflow simulation of iced blades.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Christian Behnken, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci., 5, 1211–1223, https://doi.org/10.5194/wes-5-1211-2020, https://doi.org/10.5194/wes-5-1211-2020, 2020
Short summary
Short summary
We extend the common characterisation and modelling of wind time series with respect to higher-order statistics. We present an approach which enables us to obtain the general multipoint statistics of wind time series measured. This work is an important step in a more comprehensive description of wind also including extreme events. Important is that we show how stochastic equations can be derived from measured wind data which can be used to model long time series.
Maciej Karczewski, Piotr Domagalski, Arnoldus van Wingerde, Bernhard Stoevesandt, Peter Jamieson, and Lars Roar Saetran
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-23, https://doi.org/10.5194/wes-2020-23, 2020
Revised manuscript not accepted
Short summary
Short summary
The paper presents a concept of a multi-rotor system as a floating off-shore wind turbine. The results show that it may be an alternative to conventional wind turbines and even be cheaper in a long run, thus lowering the cost of energy to consumers. It may also solve technological barriers. The motivation for research was the idea of providing a technology vision for regions, where certain local supply chain can be employed to revitalize the shipyard industry while using renewable energy.
Mathias Møller, Piotr Domagalski, and Lars Roar Sætran
Wind Energ. Sci., 5, 391–411, https://doi.org/10.5194/wes-5-391-2020, https://doi.org/10.5194/wes-5-391-2020, 2020
Short summary
Short summary
This work has analyzed historical data of 10 min averaged wind speed measurements to investigate the accuracy of the commonly used equations for describing the wind velocity as a function of the height above ground. The results of analyzing data from a wide range of sites show that the common equations do not sufficiently describe certain physical phenomena, especially at offshore and coastal locations. The results imply that there is a need for more advanced models.
Dominik Traphan, Iván Herráez, Peter Meinlschmidt, Friedrich Schlüter, Joachim Peinke, and Gerd Gülker
Wind Energ. Sci., 3, 639–650, https://doi.org/10.5194/wes-3-639-2018, https://doi.org/10.5194/wes-3-639-2018, 2018
Short summary
Short summary
Wind turbines are exposed to harsh weather, leading to surface defects on rotor blades emerging from the first day of operation. Defects
grow quickly and affect the performance of wind turbines. Thus, there is demand for an easily applicable remote-inspection method that is sensitive to small
surface defects. In this work we show that infrared thermography can meet these requirements by visualizing differences in the surface temperature
of the rotor blades downstream of surface defects.
Jan Bartl, Franz Mühle, and Lars Sætran
Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, https://doi.org/10.5194/wes-3-489-2018, 2018
Short summary
Short summary
Our experimental wind tunnel study on a pair of model wind turbines demonstrates a significant potential of turbine yaw angle control for the combined optimization of turbine power and rotor loads. Depending on the turbines' relative positions to the incoming wind, a combined power increase and individual rotor load reduction can be achieved by operating the turbine rotors slightly misaligned with the main wind direction (i.e., at a certain yaw angle).
Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling
Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, https://doi.org/10.5194/wes-3-329-2018, 2018
Short summary
Short summary
Wake steering by yawing a wind turbine offers great potential to increase the wind farm power production. A model scale experiment in a controlled wind tunnel environment has been performed to map the wake flow's complex velocity distribution for different inflow conditions. A non-uniform sheared inflow was observed to affect the wake flow only insignificantly. The level of turbulent velocity fluctuations in the inflow, however, influenced the wake's velocity distribution to a higher degree.
Jannik Schottler, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018, https://doi.org/10.5194/wes-3-257-2018, 2018
Short summary
Short summary
In this work, the wake flows behind two different model wind turbines were investigated in wind tunnel experiments user laser Doppler anemometry. It was found that the width of the wake flow is significantly dependent on the quantities examined, becoming much wider when taking higher-order statistics into account. This effect is stable against yaw misalignment and thus affects not only wind farm layout optimizations but also the applicability of active wake steering methods.
Julie Krøgenes, Lovisa Brandrud, Richard Hann, Jan Bartl, Tania Bracchi, and Lars Sætran
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2017-39, https://doi.org/10.5194/wes-2017-39, 2017
Preprint withdrawn
Short summary
Short summary
Leading edge ice accretion causes significant performance degradation to wind power installations in cold climate areas. This study focuses on the effect of three typical ice shapes; rime ice, glaze ice and a mixed ice. Experiments were conducted in the low speed wind tunnel at NTNU and compared with ANSYS Fluent CFD analyses. Results show a reduction on lift and an increase in drag for all ice cases, most severely for the mixed ice with it's horn-like shape.
Jannik Schottler, Agnieszka Hölling, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 2, 439–442, https://doi.org/10.5194/wes-2-439-2017, https://doi.org/10.5194/wes-2-439-2017, 2017
Short summary
Short summary
Recently, the concept of intentional derating of single wind turbines in order to increase the energy yield of a wind farm has been studied intensively. Although the potential seems promising, the effects of atmospheric conditions need to be understood in greater detail. This study shows a strong influence of vertical velocity gradients on the power output of two model wind turbines, whereas the upstream turbine is derated by an intentional misalignment of the rotor and the inflow.
Jan Bartl and Lars Sætran
Wind Energ. Sci., 2, 55–76, https://doi.org/10.5194/wes-2-55-2017, https://doi.org/10.5194/wes-2-55-2017, 2017
Short summary
Short summary
As wind turbines extract energy from the wind, a wind field of reduced wind speed and increased turbulence is left behind for the downstream turbines. For the exact calculation of the annual energy production and lifetime of wind turbines, it is therefore of great importance to be able to accurately calculate this turbulent wake flow for different wind conditions. This paper compares different computational modeling approaches with flow measurements on model turbines in a wind tunnel.
Jannik Schottler, Nico Reinke, Agnieszka Hölling, Jonathan Whale, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 2, 1–13, https://doi.org/10.5194/wes-2-1-2017, https://doi.org/10.5194/wes-2-1-2017, 2017
Short summary
Short summary
To what extent turbulence characteristics of wind in the atmosphere transfer to wind turbines in terms of power, loads, etc. is of great interest throughout the research community. An experimental approach using a model wind turbine at laboratory scale was used in a wind tunnel study. It is shown that the gustiness of the wind remains present in the wind turbine data, stressing the importance of including those wind characteristics in industry standards and when designing wind turbines.
David Bastine, Lukas Vollmer, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-38, https://doi.org/10.5194/wes-2016-38, 2016
Revised manuscript not accepted
Short summary
Short summary
Modeling of wind turbine wakes plays a key role in the maximization of the power output and lifetime of wind turbines in wind farms. In order to capture important dynamic and turbulent aspects of the wake, a new stochastic modeling approach is presented in this work. The resulting new kind of stochastic wake model captures important characteristics of loads which act on wind turbines in the wake. It might therefore be of great use for the planing and controlling of wind farms.
Iván Herráez, Buşra Akay, Gerard J. W. van Bussel, Joachim Peinke, and Bernhard Stoevesandt
Wind Energ. Sci., 1, 89–100, https://doi.org/10.5194/wes-1-89-2016, https://doi.org/10.5194/wes-1-89-2016, 2016
Short summary
Short summary
The flow in the blade root region of horizontal axis wind turbines is highly three-dimensional. Furthermore, it is influenced by the presence of strong trailing vortices. In this work we study the complex root flow by means of experiments and numerical simulations. The simulations are shown to be reliable at predicting the main flow features of the rotor blades. Additionally, new insight into the physical mechanisms governing the blade root aerodynamics is given.
G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N. Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad, H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen, P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom, S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen, R. W. Künneke, P. E. Morthorst, and K. Skytte
Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, https://doi.org/10.5194/wes-1-1-2016, 2016
Related subject area
Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Local correlation-based transition models for high-Reynolds-number wind-turbine airfoils
Vortex identification methods applied to wind turbine tip vortices
Experimental study of the effect of a slat on the aerodynamic performance of a thick base airfoil
Dynamic inflow model for a floating horizontal axis wind turbine in surge motion
A multipurpose lifting-line flow solver for arbitrary wind energy concepts
A computationally efficient engineering aerodynamic model for swept wind turbine blades
A computationally efficient engineering aerodynamic model for non-planar wind turbine rotors
Some effects of flow expansion on the aerodynamics of horizontal-axis wind turbines
Experimental analysis of radially resolved dynamic inflow effects due to pitch steps
Wind tunnel testing of a swept tip shape and comparison with multi-fidelity aerodynamic simulations
Ducted wind turbines in yawed flow: a numerical study
UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion
Vertical-axis wind-turbine computations using a 2D hybrid wake actuator-cylinder model
Maximal power per device area of a ducted turbine
How realistic are the wakes of scaled wind turbine models?
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
A simplified model for transition prediction applicable to wind-turbine rotors
Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers
The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
Surrogate-based aeroelastic design optimization of tip extensions on a modern 10 MW wind turbine
Low-Reynolds-number investigations on the ability of the strip of e-TellTale sensor to detect the flow features over wind turbine blade section: flow stall and reattachment dynamics
Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps
An impulse-based derivation of the Kutta–Joukowsky equation for wind turbine thrust
Field test of an active flap system on a full-scale wind turbine
Determination of the angle of attack on a research wind turbine rotor blade using surface pressure measurements
Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine
Identification of airfoil polars from uncertain experimental measurements
Laminar-turbulent transition characteristics of a 3-D wind turbine rotor blade based on experiments and computations
Parametric slat design study for thick-base airfoils at high Reynolds numbers
An improved second-order dynamic stall model for wind turbine airfoils
The flow past a flatback airfoil with flow control devices: benchmarking numerical simulations against wind tunnel data
On the velocity at wind turbine and propeller actuator discs
Cartographing dynamic stall with machine learning
Top-level rotor optimisations based on actuator disc theory
Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers
Validation and accommodation of vortex wake codes for wind turbine design load calculations
Improving wind farm flow models by learning from operational data
Actuator line simulations of wind turbine wakes using the lattice Boltzmann method
Development of a second-order dynamic stall model
Investigations of aerodynamic drag forces during structural blade testing using high-fidelity fluid–structure interaction
Brief communication: A fast vortex-based smearing correction for the actuator line
Brief communication: A double-Gaussian wake model
The effect of wind direction shear on turbine performance in a wind farm in central Iowa
Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact
Brief communication: Wind-speed-independent actuator disk control for faster annual energy production calculations of wind farms using computational fluid dynamics
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022, https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
Short summary
This work introduces the FLOW Estimation and Rose Superposition (FLOWERS) wind turbine wake model. This model analytically integrates the wake over wind directions to provide a time-averaged flow field. This new formulation is used to perform layout optimization. The FLOWERS model provides a smooth flow field over an entire wind plant at fraction of the computational cost of the standard numerical integration approach.
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022, https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Short summary
The e-TellTale, a new aerodynamic sensor, has been tested in a large wind tunnel at CSTB. This sensor has been designed to detect the flow separation on wind turbine blades, which can cause energy production losses and increased aging of the blades. These wind tunnel tests highlighted the good ability of the e-TellTale to detect the flow separation and the influence of the size and location of the e-TellTale on the flow separation detection.
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022, https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Short summary
This paper investigates the potentials and the limitations of mini Gurney flaps and their combination with vortex generators for improved rotor blade performance of wind turbines. These small passive add-ons are installed in order to increase the annual energy production by mitigating the effects of both early separation toward the root region and surface erosion toward the tip region of the blade. As such, this study contributes to the reliable and long-term generation of renewable energy.
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022, https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
Short summary
This paper presents a comprehensive aerodynamic design study for a 5 MW Darrieus offshore VAWT in the context of multi-megawatt floating VAWTs. This study systematically analyzes the effect of different, important design variables including the number of blades, aspect ratio and blade chord tapering in a comprehensive load analysis of both the parked and operating aerodynamic loads including turbine power performance analysis using a vortex-based aerodynamic model.
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022, https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary
Short summary
The spoiler is found to efficiently rearrange the mean flow seen by thick aerofoil: adding lift throughout the positive angles of attack, the drawback is a high drag penalty coupled with high unsteadiness of the aerodynamic forces. The impact of this type of excitation will be quantified further in terms of energy production and fatigue in future work.
Yong Su Jung, Ganesh Vijayakumar, Shreyas Ananthan, and James Baeder
Wind Energ. Sci., 7, 603–622, https://doi.org/10.5194/wes-7-603-2022, https://doi.org/10.5194/wes-7-603-2022, 2022
Short summary
Short summary
In RANS CFD, the eN-based method showed its superiority over local correlation-based transition models (LCTMs) coupled with the SST turbulence model for predicting transition behavior at high-Reynolds-number flows (3–15 million). We evaluated the performance of two LCTMs coupled with the SA turbulence model. As a result, the SA-based two-equation transition model showed a comparable performance with the eN-based method and better glide ratio (L/D) predictions than the SST-based model.
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022, https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Short summary
This paper compares different vortex identification methods to evaluate their suitability to study the tip vortices of a wind turbine. The assessment is done through experimental data from the wake of a wind turbine model. Results show comparability in some aspects as well as significant differences, providing evidence to justify further comparisons. Therefore, this study proves that the selection of the most suitable postprocessing methods of tip vortex data is pivotal to ensure robust results.
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584, https://doi.org/10.5194/wes-7-573-2022, https://doi.org/10.5194/wes-7-573-2022, 2022
Short summary
Short summary
There is continuous effort to try and improve the aerodynamic performance of wind turbine blades. This work shows that adding a leading-edge slat to wind turbine blades can significantly enhance the aerodynamic performance of wind turbines, even more than with vortex generators (which are commonly used on commercial turbines). The findings are obtained through wind tunnel tests on different airfoil–slat combinations.
Carlos Ferreira, Wei Yu, Arianna Sala, and Axelle Viré
Wind Energ. Sci., 7, 469–485, https://doi.org/10.5194/wes-7-469-2022, https://doi.org/10.5194/wes-7-469-2022, 2022
Short summary
Short summary
Floating offshore wind turbines may experience large surge motions that, when faster than the local wind speed, cause rotor–wake interaction.
We derive a model which is able to predict the wind speed at the wind turbine, even for large and fast motions and load variations in the wind turbine.
The proposed dynamic inflow model includes an adaptation for highly loaded flow, and it is accurate and simple enough to be easily implemented in most blade element momentum design models.
Emmanuel Branlard, Ian Brownstein, Benjamin Strom, Jason Jonkman, Scott Dana, and Edward Ian Baring-Gould
Wind Energ. Sci., 7, 455–467, https://doi.org/10.5194/wes-7-455-2022, https://doi.org/10.5194/wes-7-455-2022, 2022
Short summary
Short summary
In this work, we present an aerodynamic tool that can model an arbitrary collections of wings, blades, rotors, and towers. With these functionalities, the tool can be used to study and design advanced wind energy concepts, such as horizontal-axis wind turbines, vertical-axis wind turbines, kites, or multi-rotors. This article describes the key features of the tool and presents multiple applications. Field measurements of horizontal- and vertical-axis wind turbines are used for comparison.
Ang Li, Georg Raimund Pirrung, Mac Gaunaa, Helge Aagaard Madsen, and Sergio González Horcas
Wind Energ. Sci., 7, 129–160, https://doi.org/10.5194/wes-7-129-2022, https://doi.org/10.5194/wes-7-129-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for the swept horizontal-axis wind turbine blades is proposed. It uses a combination of analytical results and engineering approximations. The performance of the model is comparable with heavier high-fidelity models but has similarly low computational cost as currently used low-fidelity models. The model could be used for an efficient and accurate load calculation of swept wind turbine blades and could eventually be integrated in a design optimization framework.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 75–104, https://doi.org/10.5194/wes-7-75-2022, https://doi.org/10.5194/wes-7-75-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for non-planar horizontal-axis wind turbines is proposed. The performance of the model is comparable with high-fidelity models but has similarly low computational cost as currently used low-fidelity models, which do not have the capability to model non-planar rotors. The developed model could be used for an efficient and accurate load calculation of non-planar wind turbines and eventually be integrated in a design optimization framework.
David H. Wood and Eric J. Limacher
Wind Energ. Sci., 6, 1413–1425, https://doi.org/10.5194/wes-6-1413-2021, https://doi.org/10.5194/wes-6-1413-2021, 2021
Short summary
Short summary
The airflow through a wind turbine must expand as it goes through the blades for them to extract energy from the wind. Expansion has not been properly incorporated in wind turbine aerodynamics. We show that the conventional equation for wind turbine thrust becomes inaccurate when the expansion is maximized to achieve maximum power, and expansion reduces power by around 6 %. We formulate equations for the disturbance of the external flow and show that this is maximized at the rotor plane.
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021, https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Short summary
Dynamic inflow denotes the unsteady aerodynamic response to fast changes in rotor loading and leads to load overshoots. We performed a pitch step experiment with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg. We measured axial and tangential inductions with a recent method with a 2D-LDA system and performed load and wake measurements. These radius-resolved measurements allow for new insights into the dynamic inflow phenomenon.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021, https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Short summary
Curved blade tips can potentially have a significant impact on wind turbine performance and loads. A swept tip shape optimized for wind turbine applications is tested in a wind tunnel. A range of numerical aerodynamic simulation tools with various levels of fidelity are compared. We show that all numerical tools except for the simplest blade element momentum based are in good agreement with the measurements, suggesting the required level of model fidelity necessary for the design of such tips.
Vinit Dighe, Dhruv Suri, Francesco Avallone, and Gerard van Bussel
Wind Energ. Sci., 6, 1263–1275, https://doi.org/10.5194/wes-6-1263-2021, https://doi.org/10.5194/wes-6-1263-2021, 2021
Short summary
Short summary
Ducted wind turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform flows are caused by the presence of buildings or other surface discontinuities. For this reason, the aerodynamic performance of DWTs in yawed-flow conditions must be characterized. It is found that the duct cross-section camber offers not only insensitivity to yaw but also a gain in performance up to a specific yaw angle; thereafter any further increase in yaw results in a performance drop.
Alessandro Fontanella, Ilmas Bayati, Robert Mikkelsen, Marco Belloli, and Alberto Zasso
Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021, https://doi.org/10.5194/wes-6-1169-2021, 2021
Short summary
Short summary
The scale model wind tunnel experiment presented in this paper investigated the aerodynamic response of a floating turbine subjected to imposed surge motion. The problem is studied under different aspects, from airfoil aerodynamics to wake, in a coherent manner. Results show quasi-static behavior for reduced frequencies lower than 0.5 and possible unsteadiness for higher surge motion frequencies. Data are made available to the public for future verification and calibration of numerical models.
Edgar Martinez-Ojeda, Francisco Javier Solorio Ordaz, and Mihir Sen
Wind Energ. Sci., 6, 1061–1077, https://doi.org/10.5194/wes-6-1061-2021, https://doi.org/10.5194/wes-6-1061-2021, 2021
Short summary
Short summary
A model for computing vertical-axis wind turbine farms was developed using computational fluid dynamics open-source software. This model has the potential of evaluating wind farm configurations which can lead to a higher annual energy yield. Such configurations have not been studied thoroughly due to the fact that most analysis tools are computationally expensive. This model can also be run in personal computers within a matter of minutes or hours depending on the number of turbines.
Nojan Bagheri-Sadeghi, Brian T. Helenbrook, and Kenneth D. Visser
Wind Energ. Sci., 6, 1031–1041, https://doi.org/10.5194/wes-6-1031-2021, https://doi.org/10.5194/wes-6-1031-2021, 2021
Short summary
Short summary
The design of a ducted wind turbine was optimized to maximize the power per total cross-sectional area of the device. The associated power coefficient was 0.70, which is significantly greater than that obtainable from an open rotor turbine. Furthermore, it was shown that there is an optimal duct length, which is 15 % of the rotor diameter.
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021, https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Short summary
This paper quantifies the fidelity of the wakes generated by a small (1 m diameter) scaled wind turbine model operated in a large boundary layer wind tunnel. A detailed scaling analysis accompanied by large-eddy simulations shows that these wakes are very realistic scaled versions of the ones generated by the parent full-scale wind turbine in the field.
Mohammad Youssef Mahfouz, Climent Molins, Pau Trubat, Sergio Hernández, Fernando Vigara, Antonio Pegalajar-Jurado, Henrik Bredmose, and Mohammad Salari
Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021, https://doi.org/10.5194/wes-6-867-2021, 2021
Short summary
Short summary
This paper introduces the numerical models of two 15 MW floating offshore wind turbines (FOWTs) WindCrete and Activefloat. WindCrete is a spar floating platform designed by Universitat Politècnica de Catalunya, while Activefloat is a semi-submersible platform designed by Esteyco. The floaters are designed within the Horizon 2020 project COREWIND. Later in the paper, the responses of both models to wind and second-order waves are analysed with an emphasis on the effect of second-order waves.
Thales Fava, Mikaela Lokatt, Niels Sørensen, Frederik Zahle, Ardeshir Hanifi, and Dan Henningson
Wind Energ. Sci., 6, 715–736, https://doi.org/10.5194/wes-6-715-2021, https://doi.org/10.5194/wes-6-715-2021, 2021
Short summary
Short summary
This work develops a simplified framework to predict transition to turbulence on wind-turbine blades. The model is based on the boundary-layer and parabolized stability equations, including rotation and three-dimensionality effects. We show that these effects may promote transition through highly oblique Tollmien–Schlichting (TS) or crossflow modes at low radii, and they should be considered for a correct transition prediction. At high radii, transition tends to occur through 2D TS modes.
Stefano Macrí, Sandrine Aubrun, Annie Leroy, and Nicolas Girard
Wind Energ. Sci., 6, 585–599, https://doi.org/10.5194/wes-6-585-2021, https://doi.org/10.5194/wes-6-585-2021, 2021
Short summary
Short summary
This paper investigates the effect of misaligning a wind turbine on its wake deviation response and on the global load variation of a downstream wind turbine during a positive and negative yaw maneuver, representing a misalignment–realignment scenario. Yaw maneuvers could be used to voluntarily misalign wind turbines when wake steering control is targeted. The aim of this wind farm control strategy is to optimize the overall production of the wind farm and its lifetime.
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Thanasis Barlas, Néstor Ramos-García, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 6, 491–504, https://doi.org/10.5194/wes-6-491-2021, https://doi.org/10.5194/wes-6-491-2021, 2021
Short summary
Short summary
A method to design advanced tip extensions for modern wind turbine blades is presented in this work. The resulting design concept has high potential in terms of actual implementation in a real rotor upscaling with a potential business case in reducing the cost of energy produced by future large wind turbine rotors.
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Bérengère Podvin
Wind Energ. Sci., 6, 409–426, https://doi.org/10.5194/wes-6-409-2021, https://doi.org/10.5194/wes-6-409-2021, 2021
Short summary
Short summary
Monitoring the flow features over wind turbine blades is a challenging task that has become more and more crucial to monitor and/or operate wind turbine blades. This paper demonstrates the ability of an innovative sensor to detect these features over wind turbine blades. The spatiotemporal description of the flow over the surface has been measured over an oscillating blade section and the strip displacement was compared, showing the ability of the sensor to detect stall.
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Christian Oliver Paschereit, and Kilian Oberleithner
Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021, https://doi.org/10.5194/wes-6-221-2021, 2021
Short summary
Short summary
This paper presents two methods on how to estimate the lift force that is created by a wing. These methods were experimentally assessed in a wind tunnel. Furthermore, an active trailing-edge flap, as seen on airplanes for example, is used to alleviate fluctuating loads that are created within the employed wind tunnel. Thereby, an active flow control device that can potentially serve on wind turbines to lower fatigue or lower the material used for the blades is examined.
Eric J. Limacher and David H. Wood
Wind Energ. Sci., 6, 191–201, https://doi.org/10.5194/wes-6-191-2021, https://doi.org/10.5194/wes-6-191-2021, 2021
Short summary
Short summary
This paper describes a new analysis of wind turbine thrust based on removing pressure from the equations for the wind flow through a wind turbine rotor. We show that the equation is free from the effects of flow expansion that must accompany the slowing down of the wind through the blades as they extract the kinetic energy. The conditions under which the assumptions are used in blade-element analysis, which is fundamental for wind turbine aerodynamics, are made clear for the first time.
Alejandro Gomez Gonzalez, Peder B. Enevoldsen, Athanasios Barlas, and Helge A. Madsen
Wind Energ. Sci., 6, 33–43, https://doi.org/10.5194/wes-6-33-2021, https://doi.org/10.5194/wes-6-33-2021, 2021
Short summary
Short summary
This work describes a series of tests of active flaps on a 4 MW wind turbine. The measurements were performed between October 2017 and June 2019 using two different active flap configurations on a blade of the turbine, showing a potential to manipulate the loading of the turbine between 5 % and 10 %. This project is performed with the aim of demonstrating a technology with the potential of reducing the levelized cost of energy for wind power.
Rodrigo Soto-Valle, Sirko Bartholomay, Jörg Alber, Marinos Manolesos, Christian Navid Nayeri, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 1771–1792, https://doi.org/10.5194/wes-5-1771-2020, https://doi.org/10.5194/wes-5-1771-2020, 2020
Short summary
Short summary
In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach used a reduced number of pressure tap data located close to the blade leading edge. The results were compared with the measurements from three external probes mounted on the blade at different radial positions and with analytical calculations.
Jörg Alber, Rodrigo Soto-Valle, Marinos Manolesos, Sirko Bartholomay, Christian Navid Nayeri, Marvin Schönlau, Christian Menzel, Christian Oliver Paschereit, Joachim Twele, and Jens Fortmann
Wind Energ. Sci., 5, 1645–1662, https://doi.org/10.5194/wes-5-1645-2020, https://doi.org/10.5194/wes-5-1645-2020, 2020
Short summary
Short summary
The aerodynamic impact of Gurney flaps is investigated on the rotor blades of the Berlin Research Turbine. The findings of this research project contribute to performance improvements of different-size rotor blades. Gurney flaps are considered a worthwhile passive flow-control device in order to alleviate the adverse effects of both early separation in the inner blade region and leading-edge erosion throughout large parts of the blade span.
Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1537–1550, https://doi.org/10.5194/wes-5-1537-2020, https://doi.org/10.5194/wes-5-1537-2020, 2020
Short summary
Short summary
A new method is described to identify the aerodynamic characteristics of blade airfoils directly from operational data of the turbine. Improving on a previously published approach, the present method is based on a new maximum likelihood formulation that includes errors both in the outputs and the inputs. The method is demonstrated on the identification of the polars of small-scale turbines for wind tunnel testing.
Özge Sinem Özçakmak, Helge Aagaard Madsen, Niels Nørmark Sørensen, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1487–1505, https://doi.org/10.5194/wes-5-1487-2020, https://doi.org/10.5194/wes-5-1487-2020, 2020
Short summary
Short summary
Accurate prediction of the laminar-turbulent transition process is critical for design and prediction tools to be used in the industrial design process, particularly for the high Reynolds numbers experienced by modern wind turbines. Laminar-turbulent transition behavior of a wind turbine blade section is investigated in this study by means of field experiments and 3-D computational fluid dynamics (CFD) rotor simulations.
Julia Steiner, Axelle Viré, Francesco Benetti, Nando Timmer, and Richard Dwight
Wind Energ. Sci., 5, 1075–1095, https://doi.org/10.5194/wes-5-1075-2020, https://doi.org/10.5194/wes-5-1075-2020, 2020
Short summary
Short summary
The manuscript deals with the aerodynamic design of slat elements for thick-base airfoils at high Reynolds numbers using integral boundary layer and computational fluid dynamics models. The results highlight aerodynamic benefits such as high stall angle, low roughness sensitivity, and higher aerodynamic efficiency than standard single-element configurations. However, this is accompanied by a steep drop in lift post-stall and potentially issues related to the structural design of the blade.
Galih Bangga, Thorsten Lutz, and Matthias Arnold
Wind Energ. Sci., 5, 1037–1058, https://doi.org/10.5194/wes-5-1037-2020, https://doi.org/10.5194/wes-5-1037-2020, 2020
Short summary
Short summary
Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine load calculations despite its long research effort in the past. The present paper describes a new
second-order dynamic stall model for wind turbine airfoils. The new model is robust and improves the prediction for the aerodynamic forces and their higher-harmonic effects due to vortex shedding but also provides improved predictions for pitching moment and drag.
George Papadakis and Marinos Manolesos
Wind Energ. Sci., 5, 911–927, https://doi.org/10.5194/wes-5-911-2020, https://doi.org/10.5194/wes-5-911-2020, 2020
Short summary
Short summary
Flatback airfoils are used in the root region of wind turbine blades since they have several structural and aerodynamic benefits. Several flow control devices are incorporated to mitigate the effects of vortex shedding in the wake of such airfoils. In this work, two different numerical approaches are compared to wind tunnel measurements to assess the suitability of each method for predicting the performance of the flow control devices in terms of loads and unsteady characteristics.
Gijs A. M. van Kuik
Wind Energ. Sci., 5, 855–865, https://doi.org/10.5194/wes-5-855-2020, https://doi.org/10.5194/wes-5-855-2020, 2020
Short summary
Short summary
The paper compares actuator discs in propeller and wind turbine mode. At very low rotational speed, propeller discs have an expanding wake while still energy is put into the wake. The velocity at the disc in the plane containing the axis is practically uniform: a few per mille deviation for wind turbine discs and a few per cent for propeller discs. The deviations are caused by the different strengths of the singularity in the wake boundary vorticity strength at its leading edge.
Matthew Lennie, Johannes Steenbuck, Bernd R. Noack, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 819–838, https://doi.org/10.5194/wes-5-819-2020, https://doi.org/10.5194/wes-5-819-2020, 2020
Short summary
Short summary
This study presents a marriage of unsteady aerodynamics and machine learning. When airfoils are subjected to high inflow angles, the flow no longer follows the surface and the flow is said to be separated. In this flow regime, the forces experienced by the airfoil are highly unsteady. This study uses a range of machine learning techniques to extract infomation from test data to help us understand the flow regime and makes recomendations on how to model it.
Peter Jamieson
Wind Energ. Sci., 5, 807–818, https://doi.org/10.5194/wes-5-807-2020, https://doi.org/10.5194/wes-5-807-2020, 2020
Short summary
Short summary
Wind turbine rotors are usually designed to maximize power performance, accepting any loading results. However, from the most basic wind turbine theory, actuator disc theory, two other optimization paths are demonstrated, which may lead to more cost-effective technology – the low-induction rotor where an expanded rotor diameter and some extra power is achieved without increasing the blade root bending moment and the secondary rotor which can provide a very low torque and low-cost drivetrain.
Axelle Viré, Adriaan Derksen, Mikko Folkersma, and Kumayl Sarwar
Wind Energ. Sci., 5, 793–806, https://doi.org/10.5194/wes-5-793-2020, https://doi.org/10.5194/wes-5-793-2020, 2020
Short summary
Short summary
Vortex-induced vibrations are structural vibrations that can occur due to the shedding of flow vortices when a fluid flow passes around a structure. Here, conditions specific to wind turbine towers are investigated numerically. The work highlights a complex interplay between structural and fluid dynamics. In particular, certain conditions lead to a continuous alternation between self-exciting and self-limiting vortex-induced vibrations, linked to a change in the sign of the aerodynamic damping.
Koen Boorsma, Florian Wenz, Koert Lindenburg, Mansoor Aman, and Menno Kloosterman
Wind Energ. Sci., 5, 699–719, https://doi.org/10.5194/wes-5-699-2020, https://doi.org/10.5194/wes-5-699-2020, 2020
Short summary
Short summary
The present publication has contributed towards making vortex wake models ready for application to certification load calculations. The reduction in flapwise blade root moment fatigue loading using vortex wake models instead of the blade element momentum method has been verified using dedicated CFD simulations. A validation effort against a long-term field measurement campaign featuring 2.5 MW turbines has confirmed the improved prediction of unsteady load characteristics by vortex wake models.
Johannes Schreiber, Carlo L. Bottasso, Bastian Salbert, and Filippo Campagnolo
Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, https://doi.org/10.5194/wes-5-647-2020, 2020
Short summary
Short summary
The paper describes a new method that uses standard historical operational data and reconstructs the flow at the rotor disk of each turbine in a wind farm. The method is based on a baseline wind farm flow and wake model, augmented with error terms that are
learnedfrom operational data using an ad hoc system identification approach. Both wind tunnel experiments and real data from a wind farm at a complex terrain site are used to show the capabilities of the new method.
Henrik Asmuth, Hugo Olivares-Espinosa, and Stefan Ivanell
Wind Energ. Sci., 5, 623–645, https://doi.org/10.5194/wes-5-623-2020, https://doi.org/10.5194/wes-5-623-2020, 2020
Short summary
Short summary
The presented work investigates the potential of the lattice Boltzmann method (LBM) for numerical simulations of wind turbine wakes. The LBM is a rather novel, alternative approach for computational fluid dynamics (CFD) that allows for significantly faster simulations. The study shows that the method provides similar results when compared to classical CFD approaches while only requiring a fraction of the computational demand.
Niels Adema, Menno Kloosterman, and Gerard Schepers
Wind Energ. Sci., 5, 577–590, https://doi.org/10.5194/wes-5-577-2020, https://doi.org/10.5194/wes-5-577-2020, 2020
Short summary
Short summary
It is crucial to model dynamic stall accurately to reduce inaccuracies in predicting fatigue and extreme loads. This paper investigates a new dynamic stall model. Improvements are proposed based on experiments. The updated model shows significant improvements over the initial model; however, further validation and research are still required. This updated model might be incorporated into future wind turbine design codes and will hopefully reduce inaccuracies in predicted wind turbine loads.
Christian Grinderslev, Federico Belloni, Sergio González Horcas, and Niels Nørmark Sørensen
Wind Energ. Sci., 5, 543–560, https://doi.org/10.5194/wes-5-543-2020, https://doi.org/10.5194/wes-5-543-2020, 2020
Short summary
Short summary
This study focuses on coupled computational fluid and structural dynamics simulations of a dynamic structural test of a wind turbine blade, as performed in laboratories. It is found that drag coefficients used for simulations, when planning fatigue tests, underestimate air resistance to the dynamic motion that the blade undergoes during tests. If this is not corrected for, this can result in the forces applied to the blade actually being lower in reality during tests than what was planned.
Alexander R. Meyer Forsting, Georg R. Pirrung, and Néstor Ramos-García
Wind Energ. Sci., 5, 349–353, https://doi.org/10.5194/wes-5-349-2020, https://doi.org/10.5194/wes-5-349-2020, 2020
Short summary
Short summary
Simulations of wind farms allow the estimation of the forces acting on the turbines and thus their lifetime and power production. Representing the actual geometric shape of turbines in a realistic atmospheric flow is computationally expensive; therefore they are modelled in a simplified manner. Unfortunately, these simplifications negatively impact the estimated forces. We developed an open-source aerodynamic model that corrects the forces, giving more accurate estimates of lifetime and power.
Johannes Schreiber, Amr Balbaa, and Carlo L. Bottasso
Wind Energ. Sci., 5, 237–244, https://doi.org/10.5194/wes-5-237-2020, https://doi.org/10.5194/wes-5-237-2020, 2020
Short summary
Short summary
An analytical wake model with a double-Gaussian velocity distribution is used to improve on a similar formulation by Keane et al (2016). The choice of a double-Gaussian shape function is motivated by the behavior of the near-wake region that is observed in numerical simulations and experimental measurements. The model is calibrated and validated using large eddy simulations replicating scaled wind turbine experiments, yielding improved results with respect to a classical single-Gaussian profile.
Miguel Sanchez Gomez and Julie K. Lundquist
Wind Energ. Sci., 5, 125–139, https://doi.org/10.5194/wes-5-125-2020, https://doi.org/10.5194/wes-5-125-2020, 2020
Short summary
Short summary
Wind turbine performance depends on various atmospheric conditions. We quantified the effect of the change in wind direction and speed with height (direction and speed wind shear) on turbine power at a wind farm in Iowa. Turbine performance was affected during large direction shear and small speed shear conditions and favored for the opposite scenarios. These effects make direction shear significant when analyzing the influence of different atmospheric variables on turbine operation.
Helge Aagaard Madsen, Torben Juul Larsen, Georg Raimund Pirrung, Ang Li, and Frederik Zahle
Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020, https://doi.org/10.5194/wes-5-1-2020, 2020
Short summary
Short summary
We show in the paper that the upscaling of turbines has led to new requirements in simulation of the unsteady aerodynamic forces by the engineering blade element momentum (BEM) model, originally developed for simulation of the aerodynamics of propellers and helicopters. We present a new implementation of the BEM model on a polar grid which can be characterized as an engineering actuator disc model. The aeroelastic load impact of the new BEM implementation is analyzed and quantified.
Maarten Paul van der Laan, Søren Juhl Andersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 4, 645–651, https://doi.org/10.5194/wes-4-645-2019, https://doi.org/10.5194/wes-4-645-2019, 2019
Short summary
Short summary
Wind farm layouts are designed by simple engineering wake models, which are fast to compute but also include a high uncertainty. Higher-fidelity models, such as Reynolds-averaged Navier–Stokes, can be used to verify optimized wind farm layouts, although the computational costs are high due to the large number of cases that are needed to calculate the annual energy production. This article presents a new wind turbine control method to speed up the high-fidelity simulations by a factor of 2–3.
Cited articles
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers,
J. G., Schlez, W., Phillips, J., Rados, K., Zervos, a., Politis, E. S., and
Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in
large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348,
2009. a
Bartl, J. and Sætran, L.: Blind test comparison of the performance and
wake flow between two in-line wind turbines exposed to different turbulent
inflow conditions, Wind Energ. Sci., 2, 55–76, https://doi.org/10.5194/wes-2-55-2017,
2017. a, b, c
Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power
output and yaw moments for two yaw-controlled model wind turbines, Wind
Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018a. a
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J.,
Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine
wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3,
329–343, https://doi.org/10.5194/wes-3-329-2018, 2018b. a, b
Bartl, J., Sagmo, K. F., Bracchi, T., and Sætran, L.: Performance of the
NREL S826 airfoil at low to moderate Reynolds numbers – A reference
experiment for CFD models, Eur. J. Mech. B-Fluid.,
https://doi.org/10.1016/j.euromechflu.2018.10.002, 2018c. a
Benedict, L. H. and Gould, R. D.: Towards better uncertainty estimates for
turbulence statistics, Exp. Fluids, 22, 129–136,
https://doi.org/10.1007/s003480050030, 1996. a
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004. a, b
Fischer, P. F., Lottes, J. W., and Kerkemeier, S. G.: Nek5000, available at:
http://nek5000.mcs.anl.gov, last access: 9 November 2008. a
Fleming, P., Annoni, J., Churchfield, M., Martinez-Tossas, L. A., Gruchalla,
K., Lawson, M., and Moriarty, P.: A simulation study demonstrating the
importance of large-scale trailing vortices in wake steering, Wind Energ.
Sci., 3, 243–255, https://doi.org/10.5194/wes-3-243-2018, 2018. a, b
Fleming, P. A., Gebraad, P. M. O., Lee, S., van Wingerden, J. W., Johnson,
K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.:
Evaluating techniques for redirecting turbine wakes using SOWFA, Renew.
Energ., 70, 211–218, https://doi.org/10.1016/j.renene.2014.02.015, 2014. a
Guggeri, A., Draper, M., and Usera, G.: Simulation of a 7.7 MW onshore wind
farm with the Actuator Line Model, J. Phys. Conf. Ser., 854, 012018,
https://doi.org/10.1088/1742-6596/854/1/012018, 2017. a, b
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and
Meneveau, C.: Wake structure in actuator disk models of wind turbines in yaw
under uniform inflow conditions, J. Renew. Sustain. Ener., 8, 043301,
https://doi.org/10.1063/1.4955091, 2016. a
Kleusberg, E., Mikkelsen, R. F., Schlatter, P., Ivanell, S., and Henningson,
D. S.: High-order numerical simulations of wind turbine wakes, J. Phys. Conf.
Ser., 854, 012025, https://doi.org/10.1088-1742-6596-854-1-012025, 2017. a, b
Krogstad, P.-Å. and Davidson, P. A.: Is grid turbulence Saffman
turbulence?, J. Fluid Mech., 642, 373–394, https://doi.org/10.1017/S0022112009991807,
2010. a
Krogstad, P.-Å. and Eriksen, P. E.: “Blind test” calculations of the
performance and wake development for a model wind turbine, Renew. Energ., 50,
325–333, https://doi.org/10.1016/j.renene.2012.06.044, 2013. a
Krogstad, P. Å. and Lund, J.: An experimental and numerical study of the
performance of a model turbine, Wind Energy, 15, 443–457,
https://doi.org/10.1002/we.482, 2012. a
Krogstad, P.-Å., Sætran, L., and Adaramola, M. S.: “Blind Test 3”
calculations of the performance and wake development behind two in-line and
offset model wind turbines, J. Fluid. Struct., 52, 65–80,
https://doi.org/10.1016/j.jfluidstructs.2014.10.002, 2015. a, b
Mendina, M., Draper, M., Kelm Soares, A. P., Narancio, G., and Usera, G.: A
general purpose parallel block structured open source incompressible flow
solver, Cluster Comput., 17, 231–241, https://doi.org/10.1007/s10586-013-0323-2, 2014. a
Mendonça, F., Baris, O., and Capon, G.: Simulation of radial compressor
aeroacoustics using CFD, ASME Turbo Expo 2012: Turbine Technical Conference
and Exposition, volume 8: Turbomachinery, Parts A, B, and C, 1823–1832,
https://doi.org/10.1115/GT2012-70028, 2012. a
Pierella, F., Krogstad, P.-Å., and Sætran, L.: Blind Test 2
calculations for two in-line model wind turbines where the downstream turbine
operates at various rotational speeds, Renew. Energ., 70, 62–77,
https://doi.org/10.1016/j.renene.2014.03.034, 2014. a
Polster, F., Bartl, J., Mühle, F., Thamsen, P. U., and Sætran, L.:
Experimental validation of analytical wake and downstream turbine performance
modelling, J. Phys. Conf. Ser., 1104, 012017,
https://doi.org/10.1088/1742-6596/1104/1/012017, 2018. a
Sætran, L., Mühle, F., Bartl, J., Schottler, J., Hölling, M., and
Adaramola, M. S.: Invitation to the 2017 “Blind test 5” workshop – The
wake behind a yawed wind turbine, Zenodo, https://doi.org/10.5281/zenodo.1218555, 2018. a, b, c, d
Sarlak, H., Frère, A., Mikkelsen, R., and Sørensen, J. N.:
Experimental Investigation of Static Stall Hysteresis and 3-Dimensional Flow
Structures for an NREL S826 Wing Section of Finite Span, Energies, 11, 1448,
https://doi.org/10.3390/en11061418, 2018. a, b
Sarmast, S. and Mikkelsen, R. F.: The experimental results of the NREL S826
airfoil at low Reynolds numbers, available at:
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A615785&dswid=-528,
(last access: 9 February 2017), 2012. a
Schepers, J. G., Boorsma, K., and Munduate, X.: Final results from Mexnext-I:
Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor
placed in the large German Dutch Wind Tunnel DNW, J. Phys. Conf. Ser., 555,
012089, https://doi.org/10.1088/1742-6596-555-1-012089, 2014. a
Schito, P. and Zasso, A.: Actuator forces in CFD: RANS and LES modeling in
OpenFOAM, J. Phys. Conf. Ser., 524, 012160,
https://doi.org/10.1088/1742-6596/524/1/012160, 2014. a
Schottler, J., Hölling, A., Peinke, J., and Hölling, M.: Design and
implementation of a controllable model wind turbine for experimental studies,
J. Phys. Conf. Ser., 753, 072030, https://doi.org/10.1088/1742-6596/753/7/072030, 2016. a
Schottler, J., Mühle, F., Bartl, J., Peinke, J., Adaramola, M. S.,
Sætran, L., and Hölling, M.: Comparative study on the wake deflection
behind yawed wind turbine models, J. Phys. Conf. Ser., 854, 012032,
https://doi.org/10.1088/1742-6596/854/1/012032, 2017. a
Schottler, J., Bartl, J., Mühle, F., Sætran, L., Peinke, J., and
Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw:
redefining the wake width, Wind Energ. Sci., 3, 257–273,
https://doi.org/10.5194/wes-3-257-2018, 2018. a, b
Schottler, J., Bartl, J., and Mühle, F.: Wind tunnel experiments on wind
turbine wakes in yaw, Data set, Zenodo, https://doi.org/10.5281/zenodo.1193656, 2018. a
Somers, D. M.: The S825 and S826 airfoils, Subcontractor Report, National
Renewable Energy Laboratory (NREL), NREL/SR-500-36344, 2005. a
Sørensen, J. N. and Shen, W. Z.: Numerical Modeling of Wind Turbine Wakes,
J. Fluid. Eng.-T. ASME, 124, 393, https://doi.org/10.1115/1.1471361, 2002. a
Summer, B. M. and Fredsøe, J.: Forces on a cylinder in regular waves,
World Scientific, revised edn., 123–209, https://doi.org/10.1142/9789812772770_0004,
2011. a
Thomassen, P. E., Bruheim, P. I., Suja, L., and Frøyd, L.: A novel tool
for FEM analysis of offshore wind turbines with innovative visualization
techniques, in: The Twenty-second International Offshore and Polar
Engineering Conference, Rhodes, Greece, 17–22 June 2012. a
Usera, G., Vernet, A., and Ferré, J. A.: A parallel block-structured
finite volume method for flows in complex geometry with sliding interfaces,
Flow Turbul. Combust., 81, 471, https://doi.org/10.1007/s10494-008-9153-3, 2008. a
Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the
wake deflection downstream of a wind turbine in different atmospheric
stabilities: an LES study, Wind Energ. Sci., 1, 129–141,
https://doi.org/10.5194/wes-1-129-2016, 2016. a
Wheeler, A. and Ganji, A.: Introduction to Engineering Experimentation,
Pearson Education, Upper Saddle River, New Jersey, USA, 3rd edn., 2010. a
Altmetrics
Final-revised paper
Preprint