Articles | Volume 3, issue 2
Wind Energ. Sci., 3, 883–903, 2018
https://doi.org/10.5194/wes-3-883-2018
Wind Energ. Sci., 3, 883–903, 2018
https://doi.org/10.5194/wes-3-883-2018
Research article
16 Nov 2018
Research article | 16 Nov 2018

Blind test comparison on the wake behind a yawed wind turbine

Franz Mühle et al.

Related authors

Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines
Jan Bartl, Franz Mühle, and Lars Sætran
Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018,https://doi.org/10.5194/wes-3-489-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear
Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling
Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018,https://doi.org/10.5194/wes-3-329-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width
Jannik Schottler, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018,https://doi.org/10.5194/wes-3-257-2018, 2018
Short summary

Related subject area

Aerodynamics and hydrodynamics
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary
Local correlation-based transition models for high-Reynolds-number wind-turbine airfoils
Yong Su Jung, Ganesh Vijayakumar, Shreyas Ananthan, and James Baeder
Wind Energ. Sci., 7, 603–622, https://doi.org/10.5194/wes-7-603-2022,https://doi.org/10.5194/wes-7-603-2022, 2022
Short summary
Vortex identification methods applied to wind turbine tip vortices
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022,https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Experimental study of the effect of a slat on the aerodynamic performance of a thick base airfoil
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584, https://doi.org/10.5194/wes-7-573-2022,https://doi.org/10.5194/wes-7-573-2022, 2022
Short summary

Cited articles

Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, a., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009. a
Bartl, J. and Sætran, L.: Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions, Wind Energ. Sci., 2, 55–76, https://doi.org/10.5194/wes-2-55-2017, 2017. a, b, c
Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines, Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018a. a
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018b. a, b
Bartl, J., Sagmo, K. F., Bracchi, T., and Sætran, L.: Performance of the NREL S826 airfoil at low to moderate Reynolds numbers – A reference experiment for CFD models, Eur. J. Mech. B-Fluid., https://doi.org/10.1016/j.euromechflu.2018.10.002, 2018c. a