Articles | Volume 4, issue 2
Wind Energ. Sci., 4, 369–383, 2019
https://doi.org/10.5194/wes-4-369-2019
Wind Energ. Sci., 4, 369–383, 2019
https://doi.org/10.5194/wes-4-369-2019
Research article
28 Jun 2019
Research article | 28 Jun 2019

A vortex-based tip/smearing correction for the actuator line

Alexander R. Meyer Forsting et al.

Related authors

Brief communication: How does complex terrain change the power curve of a wind turbine?
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022,https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
How should the lift and drag forces be calculated from 2-D airfoil data for dihedral or coned wind turbine blades?
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022,https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
Progress in validation of rotor aerodynamic codes using field data
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-51,https://doi.org/10.5194/wes-2022-51, 2022
Preprint under review for WES
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Brief communication: A fast vortex-based smearing correction for the actuator line
Alexander R. Meyer Forsting, Georg R. Pirrung, and Néstor Ramos-García
Wind Energ. Sci., 5, 349–353, https://doi.org/10.5194/wes-5-349-2020,https://doi.org/10.5194/wes-5-349-2020, 2020
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Ananthan, S. and Leishman, J. G.: Role of Filament Strain in the Free-Vortex Modeling of Rotor Wakes, J. Am. Helicopter Soc., 9, 176–191, 2004. a
Dag, K., Sørensen, J., Sørensen, N., and Shen, W.: Combined pseudo-spectral/actuator line model for wind turbine applications, PhD thesis, DTU Wind Energy, Denmark, 2017. a, b, c, d, e, f
Forsythe, J. R., Lynch, E., Polsky, S., and Spalart, P.: Coupled Flight Simulator and CFD Calculations of Ship Airwake using Kestrel, in: 53rd AIAA Aerospace Sciences Meeting, AIAA, Kissimmee, Florida, USA, https://doi.org/10.2514/6.2015-0556, 2015. a
Glauert, H.: Airplane Propellers, Springer Berlin Heidelberg, Berlin, Heidelberg, 169–360, https://doi.org/10.1007/978-3-642-91487-4_3, 1935. a
Jha, P. K., Churchfield, M. J., Moriarty, P. J., and Schmitz, S.: Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids, J. Sol. Energ.-T. ASME, 136, 031003, https://doi.org/10.1115/1.4026252, 2014. a
Download
Short summary
The actuator line was intended as a lifting line technique for CFD applications. In this paper we prove – theoretically and practically – that smearing the forces of the actuator line in the flow domain leads to smeared velocity fields. By combining a near-wake representation of the trailed vorticity with a viscous vortex core model, the missing induction from the smeared velocity is recovered and a lifting line for CFD simulations established.