Articles | Volume 5, issue 1
https://doi.org/10.5194/wes-5-29-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-5-29-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cluster wakes impact on a far-distant offshore wind farm's power
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Andreas Rott
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Martin Dörenkämper
Fraunhofer Institute for Wind Energy Systems, Küpkersweg 70, 26129 Oldenburg, Germany
Gerald Steinfeld
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Martin Kühn
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Related authors
Frauke Theuer, Janna Kristina Seifert, Jörge Schneemann, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-141, https://doi.org/10.5194/wes-2024-141, 2024
Preprint under review for WES
Short summary
Short summary
To be useful for end-users the forecast horizon of lidar-based minute-scale forecasts needs to be extended to at least 15 minutes. In this work, we adapt a lidar-based forecasting methodology to predict wind speed and power with horizons of up to 30 minutes. We found that the skill of the lidar-based approach highly depends on atmospheric conditions and the forecast characteristics. It was able to outperform persistence up to a 16 minute forecast horizon during unstable conditions.
Frauke Theuer, Andreas Rott, Jörge Schneemann, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 7, 2099–2116, https://doi.org/10.5194/wes-7-2099-2022, https://doi.org/10.5194/wes-7-2099-2022, 2022
Short summary
Short summary
Remote-sensing-based approaches have shown potential for minute-scale forecasting and need to be further developed towards an operational use. In this work we extend a lidar-based forecast to an observer-based probabilistic power forecast by combining it with a SCADA-based method. We further aggregate individual turbine power using a copula approach. We found that the observer-based forecast benefits from combining lidar and SCADA data and can outperform persistence for unstable stratification.
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022, https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Short summary
We present three methods that can determine the alignment of a lidar placed on the transition piece of an offshore wind turbine based on measurements with the instrument: a practical implementation of hard targeting for north alignment, a method called sea surface levelling to determine the levelling of the system from water surface measurements, and a model that can determine the dynamic levelling based on the operating status of the wind turbine.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Frauke Theuer, Janna Kristina Seifert, Jörge Schneemann, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-141, https://doi.org/10.5194/wes-2024-141, 2024
Preprint under review for WES
Short summary
Short summary
To be useful for end-users the forecast horizon of lidar-based minute-scale forecasts needs to be extended to at least 15 minutes. In this work, we adapt a lidar-based forecasting methodology to predict wind speed and power with horizons of up to 30 minutes. We found that the skill of the lidar-based approach highly depends on atmospheric conditions and the forecast characteristics. It was able to outperform persistence up to a 16 minute forecast horizon during unstable conditions.
Daniel Ribnitzky, Vlaho Petrovic, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-168, https://doi.org/10.5194/wes-2024-168, 2024
Preprint under review for WES
Short summary
Short summary
In this paper, the Hybrid-Lambda Rotor is scaled to wind tunnel size and validated in wind tunnel experiments. The objectives are to derive a scaling methodology, to investigate the influence of the steep gradients of axial induction along the blade span and to characterize the near wake. The study reveals complex three-dimensional flow patterns for blade designs with non-uniform loading and it can offer new inspirations when solving other scaling problems for complex wind turbine systems.
Bjarke Tobias Eisensøe Olsen, Andrea Noemi Hahmann, Nicolás González Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3123, https://doi.org/10.5194/egusphere-2024-3123, 2024
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere, important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely-used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024, https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024, https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary
Short summary
This paper provides an innovative blade design methodology for offshore wind turbines with very large rotors compared to their rated power, which are tailored for an increased power feed-in at low wind speeds. Rather than designing the blade for a single optimized operational point, we include the application of peak shaving in the design process and introduce a design for two tip speed ratios. We describe how enlargement of the rotor diameter can be realized to improve the value of wind power.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023, https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Short summary
This study examines wind vane measurements of commercial wind turbines and their impact on yaw control. The authors discovered that rotor interference can cause an overestimation of wind vane measurements, leading to overcorrection of the yaw controller. A correction function that improves the yaw behaviour is presented and validated in free-field experiments on a commercial wind turbine. This work provides new insights into wind direction measurements and suggests ways to optimize yaw control.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn
Wind Energ. Sci., 8, 747–770, https://doi.org/10.5194/wes-8-747-2023, https://doi.org/10.5194/wes-8-747-2023, 2023
Short summary
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Frauke Theuer, Andreas Rott, Jörge Schneemann, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 7, 2099–2116, https://doi.org/10.5194/wes-7-2099-2022, https://doi.org/10.5194/wes-7-2099-2022, 2022
Short summary
Short summary
Remote-sensing-based approaches have shown potential for minute-scale forecasting and need to be further developed towards an operational use. In this work we extend a lidar-based forecast to an observer-based probabilistic power forecast by combining it with a SCADA-based method. We further aggregate individual turbine power using a copula approach. We found that the observer-based forecast benefits from combining lidar and SCADA data and can outperform persistence for unstable stratification.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Balthazar Arnoldus Maria Sengers, Matthias Zech, Pim Jacobs, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 7, 1455–1470, https://doi.org/10.5194/wes-7-1455-2022, https://doi.org/10.5194/wes-7-1455-2022, 2022
Short summary
Short summary
Wake steering aims to redirect the wake away from a downstream turbine. This study explores the potential of a data-driven surrogate model whose equations can be interpreted physically. It estimates wake characteristics from measurable input variables by utilizing a simple linear model. The model shows encouraging results in estimating available power in the far wake, with significant improvements over currently used analytical models in conditions where wake steering is deemed most effective.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022, https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Short summary
We present three methods that can determine the alignment of a lidar placed on the transition piece of an offshore wind turbine based on measurements with the instrument: a practical implementation of hard targeting for north alignment, a method called sea surface levelling to determine the levelling of the system from water surface measurements, and a model that can determine the dynamic levelling based on the operating status of the wind turbine.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021, https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Short summary
Dynamic inflow denotes the unsteady aerodynamic response to fast changes in rotor loading and leads to load overshoots. We performed a pitch step experiment with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg. We measured axial and tangential inductions with a recent method with a 2D-LDA system and performed load and wake measurements. These radius-resolved measurements allow for new insights into the dynamic inflow phenomenon.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Anantha Padmanabhan Kidambi Sekar, Marijn Floris van Dooren, Andreas Rott, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-16, https://doi.org/10.5194/wes-2021-16, 2021
Preprint withdrawn
Short summary
Short summary
Turbine-mounted lidars performing inflow scans can be used to optimise wind turbine performance and extend their lifetime. This paper introduces a new method to extract wind inflow information from a turbine-mounted scanning SpinnerLidar based on Proper Orthogonal Decomposition. This method offers a balance between simple reconstruction methods and complicated physics-based solvers. The results show that the model can be used for lidar assisted control, loads validation and turbulence studies.
Frauke Theuer, Marijn Floris van Dooren, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 5, 1449–1468, https://doi.org/10.5194/wes-5-1449-2020, https://doi.org/10.5194/wes-5-1449-2020, 2020
Short summary
Short summary
Very short-term wind power forecasts are gaining increasing importance with the rising share of renewables in today's energy system. In this work, we developed a methodology to forecast wind power of offshore wind turbines on minute scales utilising long-range single-Doppler lidar measurements. The model was able to outperform persistence during unstable stratification in terms of deterministic and probabilistic scores, while it showed large shortcomings for stable atmospheric conditions.
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Róbert Ungurán, Vlaho Petrović, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 677–692, https://doi.org/10.5194/wes-4-677-2019, https://doi.org/10.5194/wes-4-677-2019, 2019
Short summary
Short summary
A novel lidar-based sensory system for wind turbine control is proposed. The main contributions are the parametrization method of the novel measurement system, the identification of possible sources of measurement uncertainty, and their modelling. Although not the focus of the submitted paper, the mentioned contributions represent essential building blocks for robust feedback–feedforward wind turbine control development which could be used to improve wind turbine control strategies.
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580, https://doi.org/10.5194/wes-4-563-2019, https://doi.org/10.5194/wes-4-563-2019, 2019
Short summary
Short summary
Airborne wind energy systems aim to operate at altitudes above conventional wind turbines where reliable high-resolution wind data are scarce. Wind measurements and computational simulations both have advantages and disadvantages when assessing the wind resource at such heights. This article investigates whether assimilating measurements into the model generates a more accurate wind data set up to 1100 m. These wind data sets are used to estimate optimal AWES operating altitudes and power.
Mehdi Vali, Vlaho Petrović, Gerald Steinfeld, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 139–161, https://doi.org/10.5194/wes-4-139-2019, https://doi.org/10.5194/wes-4-139-2019, 2019
Short summary
Short summary
A new active power control (APC) approach is investigated to simultaneously reduce the wake-induced power tracking errors and structural fatigue loads of individual turbines within a wind farm. The non-unique solution of the APC problem with respect to the distribution of the individual powers is exploited. The simple control architecture and practical measurement system make the proposed approach prominent for real-time control of large wind farms with turbulent flows and wakes.
Andreas Rott, Bart Doekemeijer, Janna Kristina Seifert, Jan-Willem van Wingerden, and Martin Kühn
Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, https://doi.org/10.5194/wes-3-869-2018, 2018
Short summary
Short summary
Active wake deflection (AWD) aims to increase the power output of a wind farm by misaligning the yaw of upstream turbines. We analysed the effect of dynamic wind direction changes on AWD. The results show that AWD is very sensitive towards these dynamics. Therefore, we present a robust active wake control, which considers uncertainties and wind direction changes, increasing the overall power output of a wind farm. A side effect is a significant reduction of the yaw actuation of the turbines.
Niko Mittelmeier and Martin Kühn
Wind Energ. Sci., 3, 395–408, https://doi.org/10.5194/wes-3-395-2018, https://doi.org/10.5194/wes-3-395-2018, 2018
Short summary
Short summary
Upwind horizontal axis wind turbines need to be aligned with the main wind direction to maximize energy yield. This paper presents new methods to improve turbine alignment and detect changes during operational lifetime with standard nacelle met mast instruments. The flow distortion behind the rotor is corrected with a multilinear regression model and two alignment changes are detected with an accuracy of ±1.4° within 3 days of operation after the change is introduced.
Laura Valldecabres, Alfredo Peña, Michael Courtney, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 3, 313–327, https://doi.org/10.5194/wes-3-313-2018, https://doi.org/10.5194/wes-3-313-2018, 2018
Short summary
Short summary
This paper focuses on the use of scanning lidars for very short-term forecasting of wind speeds in a near-coastal area. An extensive data set of offshore lidar measurements up to 6 km has been used for this purpose. Using dual-doppler measurements, the topographic characteristics of the area have been modelled. Assuming Taylor's frozen turbulence and applying the topographic corrections, we demonstrate that we can forecast wind speeds with more accuracy than the benchmarks persistence or ARIMA.
Lukas Vollmer, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 2, 603–614, https://doi.org/10.5194/wes-2-603-2017, https://doi.org/10.5194/wes-2-603-2017, 2017
Short summary
Short summary
A model chain to simulate changing atmospheric conditions at the location of an offshore wind farm is introduced and validated. The methodology is used to simulate the wind flow upstream and downstream of an offshore wind turbine of the German wind farm Alpha ventus. The model results show a good agreement with wind measurements from the met mast that is located at the wind farm and with remote sensing measurements of the horizontal wind field.
Davide Trabucchi, Lukas Vollmer, and Martin Kühn
Wind Energ. Sci., 2, 569–586, https://doi.org/10.5194/wes-2-569-2017, https://doi.org/10.5194/wes-2-569-2017, 2017
Short summary
Short summary
The wakes of wind turbines cause losses in the energy production of a wind farm. The accuracy of models applied to predict wake losses is a key factor for new wind projects. This paper presents an engineering wake model that can simulate merging wakes on the basis of physical principles. We used high-fidelity simulations of merging wakes to assess this model and found a better agreement with the reference than commonly used models implementing the superposition of individual wakes.
Niko Mittelmeier, Julian Allin, Tomas Blodau, Davide Trabucchi, Gerald Steinfeld, Andreas Rott, and Martin Kühn
Wind Energ. Sci., 2, 477–490, https://doi.org/10.5194/wes-2-477-2017, https://doi.org/10.5194/wes-2-477-2017, 2017
Short summary
Short summary
Stability classification is usually based on measurements from met masts, buoys or lidars. The objective of this paper is to find a classification for stability based on wind turbine supervisory control and data acquisition measurements in order to fit engineering wake models better to the current ambient conditions. The proposed signal is very sensitive to increased turbulence. It allows us to distinguish between conditions with different magnitudes of wake effects.
Marijn Floris van Dooren, Filippo Campagnolo, Mikael Sjöholm, Nikolas Angelou, Torben Mikkelsen, and Martin Kühn
Wind Energ. Sci., 2, 329–341, https://doi.org/10.5194/wes-2-329-2017, https://doi.org/10.5194/wes-2-329-2017, 2017
Short summary
Short summary
We conducted measurements in a wind tunnel with the remote sensing technique lidar to map the flow around a row of three model wind turbines. Two lidars were positioned near the wind tunnel walls to measure the two-dimensional wind vector over a defined scanning line or area without influencing the flow itself. A comparison of the lidar measurements with a hot-wire probe and a thorough uncertainty analysis confirmed the usefulness of lidar technology for such flow measurements in a wind tunnel.
Niko Mittelmeier, Tomas Blodau, and Martin Kühn
Wind Energ. Sci., 2, 175–187, https://doi.org/10.5194/wes-2-175-2017, https://doi.org/10.5194/wes-2-175-2017, 2017
Short summary
Short summary
Efficient detection of wind turbines operating below their expected power output and immediate corrections help maximize asset value. The method presented estimates the environmental conditions from turbine states and uses pre-calculated power lookup tables from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output are an indication of underperformance. A demonstration of the method's ability to detect underperformance is given.
Lukas Vollmer, Gerald Steinfeld, Detlev Heinemann, and Martin Kühn
Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, https://doi.org/10.5194/wes-1-129-2016, 2016
Short summary
Short summary
The wake flow downstream of yaw misaligned wind turbines is studied in numeric simulations of different atmospheric turbulence and shear conditions. We find that the average trajectory of the wake as well as the variation about this average is influenced by the thermal stability of the atmosphere. The results suggest that an intentional intervention in the yaw control of individual turbines to increase overall wind farm performance might be not successful during unstable thermal conditions.
Juan José Trujillo, Janna Kristina Seifert, Ines Würth, David Schlipf, and Martin Kühn
Wind Energ. Sci., 1, 41–53, https://doi.org/10.5194/wes-1-41-2016, https://doi.org/10.5194/wes-1-41-2016, 2016
Short summary
Short summary
We present the analysis of the trajectories followed by the wind, in the immediate vicinity, behind an offshore wind turbine and their dependence on its yaw misalignment. We apply wake tracking on wind fields measured with a lidar (light detection and ranging) system located at the nacelle of the wind turbine and pointing downstream. The analysis reveals discrepancies of the estimated mean wake paths against theoretical and wind tunnel experiments using different wake-tracking techniques.
Related subject area
Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Large-eddy simulation of airborne wind energy farms
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Turbulence statistics from three different nacelle lidars
RANS modeling of a single wind turbine wake in the unstable surface layer
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Validation of wind resource and energy production simulations for small wind turbines in the United States
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
The five main influencing factors for lidar errors in complex terrain
Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations
Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions
Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow
Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study
On the measurement of stability parameter over complex mountainous terrain
Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler lidars
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
On turbulence models and lidar measurements for wind turbine control
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Recovery processes in a large offshore wind farm
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
WRF-simulated low-level jets over Iowa: characterization and sensitivity studies
Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Design and analysis of a wake model for spatially heterogeneous flow
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Evaluation of idealized large-eddy simulations performed with the Weather Research and Forecasting model using turbulence measurements from a 250 m meteorological mast
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Offshore wind farm global blockage measured with scanning lidar
Understanding and mitigating the impact of data gaps on offshore wind resource estimates
Investigating the loads and performance of a model horizontal axis wind turbine under reproducible IEC extreme operational conditions
Validation of the dynamic wake meandering model with respect to loads and power production
Method for airborne measurement of the spatial wind speed distribution above complex terrain
Axial induction controller field test at Sedini wind farm
Wake redirection at higher axial induction
An overview of wind-energy-production prediction bias, losses, and uncertainties
Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
Set-point optimization in wind farms to mitigate effects of flow blockage induced by atmospheric gravity waves
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022, https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022, https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Short summary
In this work, we study parks of large-scale airborne wind energy systems using a virtual flight simulator. The virtual flight simulator combines numerical techniques from flow simulation and kite control. Using advanced control algorithms, the systems can operate efficiently in the park despite turbulent flow conditions. For the three configurations considered in the study, we observe significant wake effects, reducing the power yield of the parks.
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Short summary
This research involves studying the flow around the section of a wind turbine blade, albeit at a lower Reynolds number or flow speed, using wall-resolved large-eddy simulations, a form of computer simulation that resolves the important scales of the flow. Among the many interesting results, it is shown that the energy entering the boundary layer around the airfoil or section of the blade is proportional to the square of the incoming flow turbulence intensity.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022, https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Short summary
We described a new automated method to separate the wind turbine wake from the undisturbed flow. The method relies on the wind speed distribution in the measured wind field to select one specific threshold value and split the measurements into wake and background points. The purpose of the method is to reduce the amount of data required – the proposed algorithm does not need precise information on the wind speed or direction and can run on the image instead of the measured data.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022, https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Short summary
Wind turbine wakes are dependent on the atmospheric conditions, and it is therefore important to be able to simulate in various different atmospheric conditions. This paper concerns the specific case of an unstable atmospheric surface layer, which is the lower part of the typical daytime atmospheric boundary layer. A simple flow model is suggested and tested for a range of single-wake scenarios, and it shows promising results for velocity deficit predictions.
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022, https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary
Short summary
In the future there will be very large wind farm clusters in the German Bight. This study investigates how the wind field is affected by these very large wind farms and how much energy can be extracted by the wind turbines. Very large wind farms do not only reduce the wind speed but can also cause a change in wind direction or temperature. The extractable energy per wind turbine is much smaller for large wind farms than for small wind farms due to the reduced wind speed inside the wind farms.
Lindsay M. Sheridan, Caleb Phillips, Alice C. Orrell, Larry K. Berg, Heidi Tinnesand, Raj K. Rai, Sagi Zisman, Dmitry Duplyakin, and Julia E. Flaherty
Wind Energ. Sci., 7, 659–676, https://doi.org/10.5194/wes-7-659-2022, https://doi.org/10.5194/wes-7-659-2022, 2022
Short summary
Short summary
The small wind community relies on simplified wind models and energy production simulation tools to obtain energy generation expectations. We gathered actual wind speed and turbine production data across the US to test the accuracy of models and tools for small wind turbines. This study provides small wind installers and owners with the error metrics and sources of error associated with using models and tools to make performance estimates, empowering them to adjust expectations accordingly.
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022, https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Short summary
Lidar-assisted control of wind turbines requires a wind field generator capable of simulating wind evolution. Out of this need, we extend the Veers method for 3D wind field generation to 4D and propose a two-step Cholesky decomposition approach. Based on this, we develop a 4D wind field generator – evoTurb – coupled with TurbSim and Mann turbulence generator. We further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide practical suggestions.
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Tobias Klaas-Witt and Stefan Emeis
Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022, https://doi.org/10.5194/wes-7-413-2022, 2022
Short summary
Short summary
Light detection and ranging (lidar) has become a valuable technology to assess the wind resource at hub height of modern wind turbines. However, because of their measurement principle, common lidars suffer from errors at orographically complex, i.e. hilly or mountainous, sites. This study analyses the impact of the five main influencing factors in a non-dimensional, model-based parameter study.
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022, https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
Short summary
Wind turbine wake behavior in hilly terrain depends on various atmospheric conditions. We modeled a wind turbine located on top of a ridge in Portugal during typical nighttime and daytime atmospheric conditions and validated these model results with observational data. During nighttime conditions, the wake deflected downwards following the terrain. During daytime conditions, the wake deflected upwards. These results can provide insight into wind turbine siting and operation in hilly regions.
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Michael F. Howland, Aditya S. Ghate, Jesús Bas Quesada, Juan José Pena Martínez, Wei Zhong, Felipe Palou Larrañaga, Sanjiva K. Lele, and John O. Dabiri
Wind Energ. Sci., 7, 345–365, https://doi.org/10.5194/wes-7-345-2022, https://doi.org/10.5194/wes-7-345-2022, 2022
Short summary
Short summary
Wake steering control, in which turbines are intentionally misaligned with the incident wind, has demonstrated potential to increase wind farm energy. We investigate wake steering control methods in simulations of a wind farm operating in the terrestrial diurnal cycle. We develop a statistical wind direction forecast to improve wake steering in flows with time-varying states. Closed-loop wake steering control increases wind farm energy production, compared to baseline and open-loop control.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022, https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Elena Cantero, Javier Sanz, Fernando Borbón, Daniel Paredes, and Almudena García
Wind Energ. Sci., 7, 221–235, https://doi.org/10.5194/wes-7-221-2022, https://doi.org/10.5194/wes-7-221-2022, 2022
Short summary
Short summary
The impact of atmospheric stability on wind energy is widely demonstrated, so we have to know how to characterise it.
This work based on a meteorological mast located in a complex terrain compares and evaluates different instrument set-ups and methodologies for stability characterisation. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements and practical use in connection with wind energy applications.
Peter Brugger, Corey Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 7, 185–199, https://doi.org/10.5194/wes-7-185-2022, https://doi.org/10.5194/wes-7-185-2022, 2022
Short summary
Short summary
Wind turbines create a wake of reduced wind speeds downstream of the rotor. The wake does not necessarily have a straight, pencil-like shape but can meander similar to a smoke plume. We investigated this wake meandering and observed that the downstream transport velocity is slower than the wind speed contrary to previous assumptions and that the evolution of the atmospheric turbulence over time impacts wake meandering on distances typical for the turbine spacing in wind farms.
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021, https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
Short summary
We validate new high-resolution data set (NORA3) for offshore wind power purposes for the North Sea and the Norwegian Sea. The aim of the validation is to ensure that NORA3 can act as a wind resource data set in the planning phase for future offshore wind power installations in the area of concern. The general conclusion of the validation is that NORA3 is well suited for wind power estimates but gives slightly conservative estimates of the offshore wind metrics.
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021, https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021, https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
Short summary
This study investigates systematic, seasonal biases in the long-term correction of short-term wind measurements (< 1 year). Two popular measure–correlate–predict (MCP) methods yield remarkably different results. Six reanalysis data sets serve as long-term data. Besides experimental results, theoretical findings are presented which link the mechanics of the methods and the properties of the reanalysis data sets to the observations. Finally, recommendations for wind park planners are derived.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021, https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021, https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Short summary
We carry out a probabilistic calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution nacelle-based lidar measurements of the wake flow field. The experimental data were collected from the Scaled Wind Farm Technology (SWiFT) facility in Texas. The analysis includes the velocity deficit, wake-added turbulence, and wake meandering features under various inflow wind and atmospheric-stability conditions.
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021, https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Short summary
Wind turbines extract momentum from atmospheric flow and convert that to electricity. This study explores recovery processes in wind farms that replenish the momentum so that wind farms can continue to function. Experiments with a numerical model show that momentum transport by turbulent eddies from above the wind turbines is the major contributor to recovery except for strong wind conditions and low wind turbine density, where horizontal advection can also play a major role.
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Short summary
As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. We leverage a year of data of two floating lidars to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. We find that almost 100 independent long events occur throughout the year.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021, https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Short summary
Wind farms operate in the atmospheric boundary layer, and their performance is strongly dependent on the atmospheric conditions. We propose a simple model of the atmospheric boundary layer that can be used as an inflow model for wind farm simulations for isolating a number of atmospheric effects – namely, the change in wind direction with height and atmospheric boundary layer depth. In addition, the simple model is shown to be consistent with two similarity theories.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021, https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary
Short summary
We deal with wake redirection, which is a promising approach designed to mitigate turbine–wake interactions which have a negative impact on the performance and lifetime of wind farms. We show that substantial power gains can be obtained by tilting the rotors of spanwise-periodic wind-turbine arrays in the atmospheric boundary layer (ABL). Optimal relative rotor sizes and spanwise spacings exist, which maximize the global power extracted from the wind.
Alfredo Peña, Branko Kosović, and Jeffrey D. Mirocha
Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, https://doi.org/10.5194/wes-6-645-2021, 2021
Short summary
Short summary
We investigate the ability of a community-open weather model to simulate the turbulent atmosphere by comparison with measurements from a 250 m mast at a flat site in Denmark. We found that within three main atmospheric stability regimes, idealized simulations reproduce closely the characteristics of the observations with regards to the mean wind, direction, turbulent fluxes, and turbulence spectra. Our work provides foundation for the use of the weather model in multiscale real-time simulations.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Kamran Shirzadeh, Horia Hangan, Curran Crawford, and Pooyan Hashemi Tari
Wind Energ. Sci., 6, 477–489, https://doi.org/10.5194/wes-6-477-2021, https://doi.org/10.5194/wes-6-477-2021, 2021
Short summary
Short summary
Wind energy systems work coherently in atmospheric flows which are gusty. This causes highly variable power productions and high fatigue loads on the system, which together hold back further growth of the wind energy market. This study demonstrates an alternative experimental procedure to investigate some extreme wind condition effects on wind turbines based on the IEC standard. This experiment can be improved upon and used to develop new control concepts, mitigating the effect of gusts.
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021, https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary
Short summary
Wind farm sites in complex terrain are subject to local wind phenomena, which are difficult to quantify but have a huge impact on a wind turbine's annual energy production. Therefore, a wind sensor was applied on an unmanned aerial vehicle and validated against stationary wind sensors with good agreement. A measurement over complex terrain showed local deviations from the mean wind speed of approx. ± 30 %, indicating the importance of an extensive site evaluation to reduce investment risk.
Ervin Bossanyi and Renzo Ruisi
Wind Energ. Sci., 6, 389–408, https://doi.org/10.5194/wes-6-389-2021, https://doi.org/10.5194/wes-6-389-2021, 2021
Short summary
Short summary
This paper describes the design and field testing of a controller for reducing wake interactions on a wind farm. Reducing the power of some turbines weakens their wakes, allowing other turbines to produce more power so that the total wind farm power may increase. There have been doubts that this is feasible, but these field tests on a full-scale wind farm indicate that this goal has been achieved, also providing convincing validation of the model used for designing the controller.
Carlo Cossu
Wind Energ. Sci., 6, 377–388, https://doi.org/10.5194/wes-6-377-2021, https://doi.org/10.5194/wes-6-377-2021, 2021
Short summary
Short summary
In this study wake redirection and axial-induction control are combined to mitigate turbine–wake interactions, which have a negative impact on the performance and lifetime of wind farms. The results confirm that substantial power gains are obtained when overinduction is combined with tilt control. More importantly, the approach is extended to the case of yaw control, showing that large power gain enhancements are obtained by means of static overinductive yaw control.
Joseph C. Y. Lee and M. Jason Fields
Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021, https://doi.org/10.5194/wes-6-311-2021, 2021
Short summary
Short summary
This review paper evaluates the energy prediction bias in the wind resource assessment process, and the overprediction bias is decreasing over time. We examine the estimated and observed losses and uncertainties in energy production from the literature, according to the proposed framework in the International Electrotechnical Commission 61400-15 standard. The considerable uncertainties call for further improvements in the prediction methodologies and more observations for validation.
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 6, 295–309, https://doi.org/10.5194/wes-6-295-2021, https://doi.org/10.5194/wes-6-295-2021, 2021
Short summary
Short summary
Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting and is especially useful when combined with other forecasting techniques. This study utilizes a popular machine learning algorithm, random forest, in an attempt to predict the forecasting error of a statistical forecasting model. Various atmospheric characteristics are used as random forest inputs in an effort to discern the most useful atmospheric information for this purpose.
Luca Lanzilao and Johan Meyers
Wind Energ. Sci., 6, 247–271, https://doi.org/10.5194/wes-6-247-2021, https://doi.org/10.5194/wes-6-247-2021, 2021
Short summary
Short summary
This research paper investigates the potential of thrust set-point optimization in large wind farms for mitigating gravity-wave-induced blockage effects for the first time, with the aim of increasing the wind-farm energy extraction. The optimization tool is applied to almost 2000 different atmospheric states. Overall, power gains above 4 % are observed for 77 % of the cases.
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Cited articles
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on
wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. a
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.:
Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/JTECH-D-13-00104.1, 2014. a
Beck, H. and Kühn, M.: Dynamic Data Filtering of Long-Range Doppler LiDAR
Wind Speed Measurements, Remote Sens., 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Beck, H. and Kühn, M.: Temporal Up-Sampling of Planar Long-Range Doppler
LiDAR Wind Speed Measurements Using Space-Time Conversion, Remote Sens., 11, 867, https://doi.org/10.3390/rs11070867, 2019. a
Bodini, N., Zardi, D., and Lundquist, J. K.: Three-dimensional structure of
wind turbine wakes as measured by scanning lidar, Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017, 2017. a
Christiansen, M. B. and Hasager, C. B.: Wake effects of large offshore wind
farms identified from satellite SAR, Remote Sens. Environ., 98, 251–268, https://doi.org/10.1016/j.rse.2005.07.009, 2005. a
Chunchuzov, I., Vachon, P., and Li, X.: Analysis and Modeling of Atmospheric
Gravity Waves Observed in RADARSAT SAR Images, Remote Sens. Environ., 74, 343–361, https://doi.org/10.1016/S0034-4257(00)00076-6, 2000. a
Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J.: A numerical
study of the effects of atmospheric and wake turbulence on wind turbine
dynamics, J. Turbulence, 13, N14, https://doi.org/10.1080/14685248.2012.668191, 2012. a
Copernicus marine service: Copernicus Marine environment monitoring service, available at: http://marine.copernicus.eu/, last access: 13 December 2019. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a
Dörenkämper, M., Optis, M., Monahan, A., and Steinfeld, G.: On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions, Bound.-Lay. Meteorol., 155, 459–482, https://doi.org/10.1007/s10546-015-0008-x, 2015a. a
Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., and Kühn, M.: The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms, J. Wind Eng. Indust. Aerodynam., 144, 146–153, https://doi.org/10.1016/j.jweia.2014.12.011, 2015b. a, b
Emeis, S.: A simple analytical wind park model considering atmospheric stability, Wind Energy, 13, 459–469, https://doi.org/10.1002/we.367, 2009. a
Emeis, S.: Wind Energy Meteorology, Springer International Publishing,
2nd Edn, Springer International Publishing AG, part of Springer Nature 2018, https://doi.org/10.1007/978-3-319-72859-9, 2018. a, b
EnBW: EnBW Hohe See and Albatros wind farms, The construction diary for Hohe
available at:
https://www.enbw.com/renewable-energy/wind-energy/our-offshore-wind-farms/hohe-see/construction-diary.html,
(last access: 18 June 2019. a
ESA: Level 2 OCN Ocean Wind Field (OWI) Component, available at:
https://sentinel.esa.int/web/sentinel/ocean-wind-field-component,
last access: 19 June 2019. a
Etling, D.: Theoretische Meteorologie, 3rd Edn., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-10430-9, 2008. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K.,
Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind Farms as
Parameterized in a Mesoscale NWP Model, Mon. Weather Rev., 140, 3017–3038, https://doi.org/10.1175/mwr-d-11-00352.1, 2012. a, b, c
Fuertes, F. C., Markfort, C., and Porté-Agel, F.: Wind Turbine Wake
Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model
Validation, Remote Sens., 10, 668, https://doi.org/10.3390/rs10050668, 2018. a
Grachev, A. A. and Fairall, C. W.: Dependence of the Monin–Obukhov
Stability Parameter on the Bulk Richardson Number over the Ocean, J. Appl. Meteorol., 36, 406–414,
https://doi.org/10.1175/1520-0450(1997)036<0406:dotmos>2.0.co;2, 1997. a
Hansen, K. S., Barthelmie, R. J., Jensen, L. E., and Sommer, A.: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm, Wind Energy, 15, 183–196,
https://doi.org/10.1002/we.512, 2011. a
Hasager, C., Vincent, P., Badger, J., Badger, M., Bella, A. D., Peña, A.,
Husson, R., and Volker, P.: Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms, Energies, 8, 5413–5439, https://doi.org/10.3390/en8065413, 2015. a, b, c
Hirth, B. D., Schroeder, J. L., Gunter, W. S., and Guynes, J. G.: Coupling
Doppler radar-derived wind maps with operational turbine data to document
wind farm complex flows, Wind Energy, 18, 529–540, https://doi.org/10.1002/we.1701, 2014. a
Lee, S., Vorobieff, P., and Poroseva, S.: Interaction of Wind Turbine Wakes
under Various Atmospheric Conditions, Energies, 11, 1442,
https://doi.org/10.3390/en11061442, 2018. a
Li, X. and Lehner, S.: Observation of TerraSAR-X for Studies on Offshore Wind
Turbine Wake in Near and Far Fields, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 6, 1757–1768, https://doi.org/10.1109/jstars.2013.2263577, 2013. a
Lignarolo, L. E., Mehta, D., Stevens, R. J., Yilmaz, A. E., van Kuik, G.,
Andersen, S. J., Meneveau, C., Ferreira, C. J., Ragni, D., Meyers, J., van Bussel, G. J., and Holierhoek, J.: Validation of four LES and a vortex
model against stereo-PIV measurements in the near wake of an actuator disc
and a wind turbine, Renewable Energy, 94, 510–523, https://doi.org/10.1016/j.renene.2016.03.070, 2016. a
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M.: Costs
and consequences of wind turbine wake effects arising from uncoordinated wind
energy development, Nat. Energy, 4, 26–34, https://doi.org/10.1038/s41560-018-0281-2, 2019. a
Mackensen, R.: Windenergie Report Deutschland 2018, available at:
http://windmonitor.iee.fraunhofer.de/opencms/export/sites/windmonitor/img/Windmonitor-2018/WERD_2018.pdf,
last access: 5 July 2019. a
Merkur Offshore: Sea Change: GE Installs The Last Turbine At One Of
Germany's Largest Offshore Wind Farms, available at:
https://www.merkur-offshore.com/progress/ (last access: 19 June 2019), 2018. a
meteociel.fr: Observation, Prévisions, Modèles, En temps réel, available at: https://www.meteociel.fr/, last access: 13 December 2019. a
Mouche, A.: Sentinel-1 Ocean Wind Fields (OWI) Algorithm Definition, Tech. Rep. CLS-DAR-NT-10-167 S1-TN-CLS-52-904, CLS/ESA, available at:
https://sentinel.esa.int/documents/247904/349449/S-1_L2_OWI_Detailed_Algorithm_Definition.pdf
(last access: 22 February 2019), 2011. a
Nygaard, N. G.: Wakes in very large wind farms and the effect of neighbouring
wind farms, J. Phys.: Conf. Ser., 524, 012162, https://doi.org/10.1088/1742-6596/524/1/012162, 2014. a
Nygaard, N. G. and Hansen, S. D.: Wake effects between two neighbouring wind
farms, J. Phys.: Conf. Ser., 753, 032020, https://doi.org/10.1088/1742-6596/753/3/032020, 2016. a, b, c, d
Orsted: Borkum Riffgrund 2, available at:
https://orsted.de/offshore-windenergie/unsere-offshore-windparks-nordsee/offshore-windpark-borkum-riffgrund-2
(last access: 19 June 2019), 2018. a
Petrofac: BorWin gamma platform topside touches down in the German North Sea,
available at: https://www.petrofac.com/en-gb/media/news/borwin-gamma-platform-topside-touches-down-in-the-german-north-sea/
(last access: 7 June 2019), 2018. a
Platis, A., Siedersleben, S. K., Bange, J., Lampert, A., Bärfuss, K., Hankers, R., Cañadillas, B., Foreman, R., Schulz-Stellenfleth, J., Djath, B., Neumann, T., and Emeis, S.: First in situ evidence of wakes in the far field behind offshore wind farms, Scient. Rep., 8, 2163, https://doi.org/10.1038/s41598-018-20389-y, 2018. a, b, c, d, e, f, g, h, i, j, k, l
Pryor, S. C., Barthelmie, R. J., and Shepherd, T. J.: The Influence of Real-World Wind Turbine Deployments on Local to Mesoscale Climate, J. Geophys. Res.-Atmos., 123, 5804–5826, https://doi.org/10.1029/2017jd028114, 2018a. a
Pryor, S. C., Shepherd, T. J., and Barthelmie, R. J.: Interannual variability
of wind climates and wind turbine annual energy production, Wind Energ.
Sci., 3, 651–665, https://doi.org/10.5194/wes-3-651-2018, 2018b. a
Rodrigo, J. S., Cantero, E., García, B., Borbón, F., Irigoyen, U.,
Lozano, S., Fernande, P. M., and Chávez, R. A.: Atmospheric stability
assessment for the characterization of offshore wind conditions, J. Phys.: Conf. Ser., 625, 012044, https://doi.org/10.1088/1742-6596/625/1/012044, 2015. a
Rott, A., Schneemann, J., Trabucchi, D., Trujillo, J., and Kühn, M.: Accurate deployment of long range scanning lidar on offshore platforms by means of sea surface leveling, in: Poster presentation, NAWEA Windtech, available at:
http://windtechconferences.org/wp-content/uploads/2018/01/Windtech2017_AnRott-Poster.pdf
(last access: 5 July 2019), 2017. a, b
Schmidt, J. and Stoevesandt, B.: The impact of wake models on wind farm layout optimization, J. Phys.: Conf. Ser., 625, 012040,
https://doi.org/10.1088/1742-6596/625/1/012040, 2015. a
Schneemann, J., Hieronimus, J., Jacobsen, S., Lehner, S., and Kühn, M.:
Offshore wind farm flow measured by complementary remote sensing techniques:
radar satellite TerraSAR-X and lidar windscanners, J. Phys.: Conf. Ser., 625,
012015, https://doi.org/10.1088/1742-6596/625/1/012015, 2015. a, b
Schneemann, J., Voß, S., Rott, A., and Kühn, M.:
Doppler wind lidar plan position indicator scans and atmospheric measurements at the offshore wind farm “Global Tech I”, PANGAEA – Data Publisher for Earth & Environmental Science, https://doi.org/10.1594/PANGAEA.909721, 2019. a
Scihub: ESA, Copernicus Open Access Hub, available at: https://scihub.copernicus.eu/, last access: 13 December 2019. a
Siedersleben, S. K., Lundquist, J. K., Platis, A., Bange, J., Bärfuss, K., Lampert, A., Cañadillas, B., Neumann, T., and Emeis, S.:
Micrometeorological impacts of offshore wind farms as seen in observations
and simulations, Environ. Res. Lett., 13, 124012, https://doi.org/10.1088/1748-9326/aaea0b, 2018a. a
Siedersleben, S. K., Platis, A., Lundquist, J. K., Lampert, A., Bärfuss, K., Cañadillas, B., Djath, B., Schulz-Stellenfleth, J., Bange, J., Neumann, T., and Emeis, S.: Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric Flow Models with Aircraft Measurements, Meteorol. Z., 27, 401–415, https://doi.org/10.1127/metz/2018/0900, 2018b. a, b, c
Sorbjan, Z. and Grachev, A. A.: An Evaluation of the Flux-Gradient Relationship in the Stable Boundary Layer, Bound.-Lay. Meteorol., 135, 385–405, https://doi.org/10.1007/s10546-010-9482-3, 2010. a
Trabucchi, D., Trujillo, J.-J., and Kühn, M.: Nacelle-based Lidar Measurements for the Calibration of a Wake Model at Different Offshore Operating Conditions, Energy Procedia, 137, 77–88, https://doi.org/10.1016/j.egypro.2017.10.335, 2017. a
Turner, S., Romero, D., Zhang, P., Amon, C., and Chan, T.: A new mathematical
programming approach to optimize wind farm layouts, Renew. Energy, 63,
674–680, https://doi.org/10.1016/j.renene.2013.10.023, 2014. a
University of Wyoming: Wyoming weather web, available at: http://weather.uwyo.edu/, last access: 13 December 2019.
a
Vincent, P., Bourbigot, M., Johnsen, H., and Piantanida, R.: Sentinel-1 Product Specification, Tech. Rep. S1-RS-MDA-52-7441, ESA, available at:
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-product-specification, last access: 13 December 2019. a, b
Volker, P. J. H., Badger, J., Hahmann, A. N., and Ott, S.: The Explicit Wake
Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF, Geosci. Model Dev., 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015, 2015. a
Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study, Wind Energ. Sci., 1, 129–141,
https://doi.org/10.5194/wes-1-129-2016, 2016. a
Witha, B., Hahmann, A., Sīle, T., Dörenkämper, M., Ezber, Y.,
García-Bustamante, E., González-Rouco, J. F., Leroy, G., and Navarro,
J.: WRF model sensitivity studies and specifications for the NEWA
mesoscale wind atlas production runs, Technical report, The NEWA consortium, 73 pp., https://doi.org/10.5281/zenodo.2682604, 2019. a, b, c
Short summary
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend over more than 50 km.
We analysed the impact of these so-called cluster wakes on a distant wind farm using remote-sensing wind measurements and power production data.
Cluster wakes caused power losses up to 55 km downstream in certain atmospheric states.
A better understanding of cluster wake effects reduces uncertainties in offshore wind resource assessment and improves offshore areal planning.
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend...
Altmetrics
Final-revised paper
Preprint