Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 491–504, 2021
https://doi.org/10.5194/wes-6-491-2021
Wind Energ. Sci., 6, 491–504, 2021
https://doi.org/10.5194/wes-6-491-2021
Research article
30 Mar 2021
Research article | 30 Mar 2021

Surrogate-based aeroelastic design optimization of tip extensions on a modern 10 MW wind turbine

Thanasis Barlas et al.

Related authors

CFD-based curved tip shape design for wind turbine blades
Mads H. Aa. Madsen, Frederik Zahle, Sergio González Horcas, Thanasis K. Barlas, and Niels N. Sørensen
Wind Energ. Sci., 7, 1471–1501, https://doi.org/10.5194/wes-7-1471-2022,https://doi.org/10.5194/wes-7-1471-2022, 2022
Short summary
Atmospheric rotating rig testing of a swept blade tip and comparison with multi-fidelity aeroelastic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Rámos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-35,https://doi.org/10.5194/wes-2022-35, 2022
Revised manuscript under review for WES
Short summary
Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems
Paul Veers, Carlo Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Athanasios Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-32,https://doi.org/10.5194/wes-2022-32, 2022
Preprint under review for WES
Short summary
Wind tunnel testing of a swept tip shape and comparison with multi-fidelity aerodynamic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021,https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Field test of an active flap system on a full-scale wind turbine
Alejandro Gomez Gonzalez, Peder B. Enevoldsen, Athanasios Barlas, and Helge A. Madsen
Wind Energ. Sci., 6, 33–43, https://doi.org/10.5194/wes-6-33-2021,https://doi.org/10.5194/wes-6-33-2021, 2021
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Bortolotti, P., Zahle, F., and Verelst, D.: IEA-10.0-198-RWT, https://www.github.com/ieawindtask37/iea-10.0-198-rwt (last access: 10 April 2019), 2019. a
Branlard, E. S. P.: Wind Turbine Aerodynamics and Vorticity-Based Methods, Springer, https://doi.org/10.1007/978-3-319-55164-7, 2017. a
Chattot, J. J.: Effects of blade tip modifications on wind turbine performance using vortex model, Comput. Fluids, 38, 1405–1410, 2009. a
Elfarra, M. A., Sezer-Uzol, N., and Akmandor, I. S.: NREL VI rotor blade: Numerical investigation and winglet design and optimization using CFD, Wing Energy, 17, 605–626, 2014. a
Farhan, A., Hassanpour, A., Burns, A., and Motlagh, Y. G.: Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance, Renew. Energ., 131, 1255–1273, 2019. a
Download
Short summary
A method to design advanced tip extensions for modern wind turbine blades is presented in this work. The resulting design concept has high potential in terms of actual implementation in a real rotor upscaling with a potential business case in reducing the cost of energy produced by future large wind turbine rotors.