Articles | Volume 6, issue 3
Wind Energ. Sci., 6, 715–736, 2021
https://doi.org/10.5194/wes-6-715-2021
Wind Energ. Sci., 6, 715–736, 2021
https://doi.org/10.5194/wes-6-715-2021

Research article 25 May 2021

Research article | 25 May 2021

A simplified model for transition prediction applicable to wind-turbine rotors

Thales Fava et al.

Related authors

Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021,https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Redesign of an upwind rotor for a downwind configuration: design changes and cost evaluation
Gesine Wanke, Leonardo Bergami, Frederik Zahle, and David Robert Verelst
Wind Energ. Sci., 6, 203–220, https://doi.org/10.5194/wes-6-203-2021,https://doi.org/10.5194/wes-6-203-2021, 2021
Short summary
Laminar-turbulent transition characteristics of a 3-D wind turbine rotor blade based on experiments and computations
Özge Sinem Özçakmak, Helge Aagaard Madsen, Niels Nørmark Sørensen, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1487–1505, https://doi.org/10.5194/wes-5-1487-2020,https://doi.org/10.5194/wes-5-1487-2020, 2020
Short summary
Investigations of aerodynamic drag forces during structural blade testing using high-fidelity fluid–structure interaction
Christian Grinderslev, Federico Belloni, Sergio González Horcas, and Niels Nørmark Sørensen
Wind Energ. Sci., 5, 543–560, https://doi.org/10.5194/wes-5-543-2020,https://doi.org/10.5194/wes-5-543-2020, 2020
Short summary
Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact
Helge Aagaard Madsen, Torben Juul Larsen, Georg Raimund Pirrung, Ang Li, and Frederik Zahle
Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020,https://doi.org/10.5194/wes-5-1-2020, 2020
Short summary

Related subject area

Aerodynamics and hydrodynamics
How realistic are the wakes of scaled wind turbine models?
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021,https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
Mohammad Youssef Mahfouz, Climent Molins, Pau Trubat, Sergio Hernández, Fernando Vigara, Antonio Pegalajar-Jurado, Henrik Bredmose, and Mohammad Salari
Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021,https://doi.org/10.5194/wes-6-867-2021, 2021
Short summary
Vertical-axis wind-turbine computations using a 2D hybrid wake actuator-cylinder model
Edgar Alejandro Martinez-Ojeda, Francisco Javier Solorio Ordaz, and Mihir Sen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-38,https://doi.org/10.5194/wes-2021-38, 2021
Revised manuscript under review for WES
Short summary
Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers
Stefano Macrí, Sandrine Aubrun, Annie Leroy, and Nicolas Girard
Wind Energ. Sci., 6, 585–599, https://doi.org/10.5194/wes-6-585-2021,https://doi.org/10.5194/wes-6-585-2021, 2021
Short summary
The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021,https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary

Cited articles

Arnal, D. and Casalis, G.: Laminar-turbulent transition prediction in three-dimensional flows, Prog. Aerosp. Sci., 36, 173–191, https://doi.org/10.1016/S0376-0421(00)00002-6, 2000. a
Bak, C., Bitsche, R. D., Yde, A., and Kim, T.: Light Rotor: The 10-MW reference wind turbine, in: Proceedings of EWEA 2012 – European Wind Energy Conference & Exhibition, 16–19 April 2012, Copenhagen, Denmark, 2012. a
Bertolotti, F. P., Herbert, T., and Spalart, P. R.: Linear and nonlinear stability of the Blasius boundary layer, J. Fluid Mech., 242, 441–474, 1992. a
Bippes, H.: Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability, Prog. Aerosp. Sci., 35, 363–412, https://doi.org/10.1016/S0376-0421(99)00002-0, 1999. a
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S., Mischenko, D. A., Örlü, R., Hanifi, A., and Hein, S.: Experimental and theoretical study of swept-wing boundary-layer instabilities. Three-dimensional Tollmien–Schlichting instability, Phys. Fluids, 31, 1–18, https://doi.org/10.1063/1.5125812, 2019. a
Download
Short summary
This work develops a simplified framework to predict transition to turbulence on wind-turbine blades. The model is based on the boundary-layer and parabolized stability equations, including rotation and three-dimensionality effects. We show that these effects may promote transition through highly oblique Tollmien–Schlichting (TS) or crossflow modes at low radii, and they should be considered for a correct transition prediction. At high radii, transition tends to occur through 2D TS modes.