Articles | Volume 6, issue 3
https://doi.org/10.5194/wes-6-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
Mohammad Youssef Mahfouz
CORRESPONDING AUTHOR
Stuttgart Wind Energy (SWE), University of Stuttgart, Allmandring 5B, 70569 Stuttgart, Germany
Climent Molins
UPC-Barcelona-Tech, Campus Nord, Carrer de Jordi Girona, 1, 3, 08034, Barcelona, Catalonia, Spain
Pau Trubat
UPC-Barcelona-Tech, Campus Nord, Carrer de Jordi Girona, 1, 3, 08034, Barcelona, Catalonia, Spain
Sergio Hernández
Esteyco, SA, Menéndez Pidal, 17, 28036 Madrid, Spain
Fernando Vigara
Esteyco, SA, Menéndez Pidal, 17, 28036 Madrid, Spain
Antonio Pegalajar-Jurado
Department of Wind Energy, Technical University of Denmark, Nils Koppels Allé 403, 2800 Kongens Lyngby, Denmark
Henrik Bredmose
Department of Wind Energy, Technical University of Denmark, Nils Koppels Allé 403, 2800 Kongens Lyngby, Denmark
Mohammad Salari
Stuttgart Wind Energy (SWE), University of Stuttgart, Allmandring 5B, 70569 Stuttgart, Germany
Related authors
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024, https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
Short summary
As climate change increasingly impacts our daily lives, a transition towards cleaner energy is needed. With all the growth in floating offshore wind and the planned floating wind farms (FWFs) in the next few years, we urgently need new techniques and methodologies to accommodate the differences between the fixed bottom and FWFs. This paper presents a novel methodology to decrease aerodynamic losses inside an FWF by passively relocating the downwind floating wind turbines out of the wakes.
Bogdan Pamfil, Henrik Bredmose, and Taeseong Kim
Wind Energ. Sci., 10, 827–856, https://doi.org/10.5194/wes-10-827-2025, https://doi.org/10.5194/wes-10-827-2025, 2025
Short summary
Short summary
A floating wind turbine time domain model, which considers dynamic stall, is used to develop Coleman-free aero-elastic stability analysis methods, namely Hill's and Floquet's. We clarify how the floater tilt is involved in the stability analysis, show damping effects of aerodynamic states, prove that results of both methods agree and can reproduce the forward- and backward-whirling rotor modes in a Coleman-based analysis, and demonstrate that both methods can be applied to a two-bladed rotor.
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024, https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
Short summary
As climate change increasingly impacts our daily lives, a transition towards cleaner energy is needed. With all the growth in floating offshore wind and the planned floating wind farms (FWFs) in the next few years, we urgently need new techniques and methodologies to accommodate the differences between the fixed bottom and FWFs. This paper presents a novel methodology to decrease aerodynamic losses inside an FWF by passively relocating the downwind floating wind turbines out of the wakes.
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Seán B. Leen, and Oisín Conway
Wind Energ. Sci., 9, 1025–1051, https://doi.org/10.5194/wes-9-1025-2024, https://doi.org/10.5194/wes-9-1025-2024, 2024
Short summary
Short summary
This paper provides a comparison for a floating offshore wind turbine between the motion and loading estimated by numerical models and measurements. The floating support structure is a novel design that includes a counterweight to provide floating stability to the system. The comparison between numerical models and the measurements includes system motion, tower loads, mooring line loads, and loading within the floating support structure.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Cited articles
Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N.,
Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference
Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind
Turbine, Tech. rep., National Renewable Energy Laboratory, available at:
https://www.nrel.gov/docs/fy20osti/76773.pdf (last access: 16 April 2021), 2020. a
ANSYS: Aqwa Theory Manual, Ansys, available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/prod_page.html?pn=Aqwa&pid=Aqwa&lang=en
(last access: 20 December 2020), 2015. a
Campos, A., Molins, C., Gironella, X., Trubat, P., and Alarcón, D.:
Experimental RAO's analysis of a monolithic concrete spar structure for
offshore floating wind turbines, in: Vol. 1: Offshore Technology, Offshore Geotechnics, Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, 31 May–5 June 2015, St. John's, Newfoundland, Canada, V001T01A016, https://doi.org/10.1115/OMAE2015-41891, 2015. a
Campos, A., Molins, C., Gironella, X., and Trubat, P.: Spar concrete
monolithic design for offshore wind turbines, P. I. Civil Eng.-Mar. En.,
169, 49–63, https://doi.org/10.1680/jmaen.2014.24, 2016. a
Coulling, A. J., Goupee, A. J., Robertson, A. N., and Jonkman, J. M.:
Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a FAST Semi-Submersible Floating Wind Turbine Model, in: Vol. 8: Ocean Renewable Energy, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. 9–14 June 2013, Nantes, France, V008T09A019, https://doi.org/10.1115/OMAE2013-10308, 2013. a
Cummins, W. E.: The impulse response function and ship motions, available at: https://dome.mit.edu/bitstream/handle/1721.3/49049/DTMB_1962_1661.pdf?sequence=1&isAllowed=y
(last access: 14 January 2021), 1962. a
Duarte, T. M., Sarmento, A. J., and Jonkman, J.: Effects of second-order
hydrodynamic forces on floating offshore wind turbines, in: 32nd ASME Wind Energy Symposium, 13–17 January 2014, National Harbor, Maryland, https://doi.org/10.2514/6.2014-0361, 2014. a
Duran, R., Hernandez, S., Vigara, F., and Mahfouz, M. Y.: COREWIND –
ACTIVEFLOAT OpenFAST model 15 MW FOWT Grand Canary Island site, Zenodo, https://doi.org/10.5281/zenodo.4322585, 2020. a
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G.,
Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R.,
Bredmose, H., Dykes, K., Sheilds, M., Allen, C., and Viselli, A.: Definition
of the IEA 15-Megawatt Offshore Reference Wind Turbine, Tech. rep.,
International Energy Agency, available at:
https://www.nrel.gov/docs/fy20osti/75698.pdf, last access: 31 December 2020. a, b, c
Gueydon, S., Duarte, T., and Jonkman, J.: Comparison of Second-Order Loads on
a Semisubmersible Floating Wind Turbine, in: Vol. 9: Ocean Renewable Energy, Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, 3–7 August 2020, Virtual, Online, V009T09A049, https://doi.org/10.1115/OMAE2014-23398, 2014. a
Haslum, H., Marley, M., Skaare, B., and Andersen, H.: Aerodynamic Roll-Yaw
Instabilities of Floating Offshore Wind Turbines, in: Vol, 9: Ocean Renewable Energy, Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, 3–7 August 2020, Virtual, Online, V009T09A049, https://doi.org/10.1115/OMAE2020-18273, 2020. a, b
Hegseth, J. M. and Bachynski, E. E.: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines, Mar. Struct., 64, 186–210, https://doi.org/10.1016/j.marstruc.2018.10.015, 2019. a
Hoerner, S.: Hoerner, published by author, https://doi.org/10.1093/benz/9780199773787.article.b00088376, 1965. a
Hundleby, G. and Freeman, K.: Unleashing Europe's offshore wind potential,
Tech. Rep. June, Wind Europe, available at:
https://windeurope.org/wp-content/uploads/files/about-wind/reports/Unleashing-Europes-offshore-wind-potential.pdf (last access: 31 December 2020), 2017. a
IEC: International Standard IEC61400-3-1: Wind energy generation systems –
Part 3-1: Design requirements for fixed offshore wind turbines, First; 2019,
Standard, IEC, Geneva, Switzerland, 2019. a
Jonkman, J. M.: Dynamics modeling and loads analysis of an offshore floating wind turbine, Tech. rep., NREL – National Renewable Energy Laboratory, Colorado, USA, 2007. a
Jonkman, J. M.: Dynamics of offshore floating wind turbines-model development and verification, Wind Energy, 12, 459–492, https://doi.org/10.1002/we.347, 2009. a
Jonkman, J. M., Robertson, A. N., and Hayman, G. J.: HydroDyn User's Guide and Theory Manual, Tech. rep., NREL – National Renewable Energy Laboratory, Colorado, USA, 2015. a
Larsen, T. J. and Hanson, T. D.: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, J. Phys. Conf. Ser., 75, 012073, https://doi.org/10.1088/1742-6596/75/1/012073, 2007. a
Mahfouz, M. Y., Faerron-Guzmán, R., Müller, K., Lemmer, F., and Cheng, P. W.: Validation of drift motions for a semi-submersible floating wind turbine and associated challenges, J. Phys. Conf. Ser., 1669, 012011, https://doi.org/10.1088/1742-6596/1669/1/012011, 2020a. a
Mahfouz, M. Y., Salari, M., Vigara, F., Hernandez, S., Molins, C., Trubat, P.,
Bredmose, H., and Pegalajar-Jurado, A.: D1.3. Public design and FAST models of
the two 15 MW floater-turbine concepts, Zenodo, https://doi.org/10.5281/zenodo.4385727, 2020b. a, b, c, d
Matha, D., Sandner, F., Molins, C., Campos, A., and Cheng, P. W.: Efficient
preliminary floating offshore wind turbine design and testing methodologies
and application to a concrete spar design, Philos. T. R. Soc. A, 373, 20140350, https://doi.org/10.1098/rsta.2014.0350, 2015.
a
Molins, C., Trubat, P., and Mahfouz, M. Y.: UPC – WINDCRETE OpenFAST model
15 MW FOWT – Grand Canary Island, Zenodo, https://doi.org/10.5281/zenodo.4322446, 2020. a
Mulders, S. P. and Van Wingerden, J. W.: Delft Research Controller: An open-source and community-driven wind turbine baseline controller, J. Phys. Conf. Ser., 1037, 032009, https://doi.org/10.1088/1742-6596/1037/3/032009, 2018. a
NREL: OpenFAST, Version 2.1.0, available at: https://github.com/OpenFAST/openfast (last access: 1 February 2021), 2019. a
NREL: ROSCO, Version 1.0.0, available at: https://github.com/NREL/rosco (last access: 1 February 2021), 2020. a
Pegalajar-Jurado, A., Bredmose, H., Borg, M., Straume, J. G., Landbø, T., Andersen, H. S., Yu, W., Müller, K., and Lemmer, F.: State-of-the-art model for the LIFES50+ OO-Star Wind Floater Semi 10MW floating wind turbine, J. Phys. Conf. Ser., 1104, 012024, https://doi.org/10.1088/1742-6596/1104/1/012024, 2018. a
Pereyra, B., Wendt, F., Robertson, A., and Jonkman, J.: Assessment of first-
and second-order wave-excitation load models for cylindrical substructures,
in: International Society of Offshore and Polar Engineers Conference (ISOPE 2016), 26 June–2 July 2016, Rhodes, Greece, 214–218, 2016. a
Roddier, D., Cermelli, C., Aubault, A., and Weinstein, A.: WindFloat: A floating foundation for offshore wind turbines, J. Renew. Sustain. Ener., 2, 033104, https://doi.org/10.1063/1.3435339, 2010. a
Vigara, F., Cerdán, L., Durán, R., Muñoz, S., Lynch, M.,
Doole, S., Molins, C., Trubat, P., and Gunache, R.: Design Basis, Zenodo, https://doi.org/10.5281/zenodo.4056779, 2020. a, b
Ziegler, J. G., Nichols, N. B., and Rochester, N. Y.: Optimum settings for
automatic controllers, J. Dyn. Syst.-T. ASME, 115, 220–222,
https://doi.org/10.1115/1.2899060, 1942. a
Short summary
This paper introduces the numerical models of two 15 MW floating offshore wind turbines (FOWTs) WindCrete and Activefloat. WindCrete is a spar floating platform designed by Universitat Politècnica de Catalunya, while Activefloat is a semi-submersible platform designed by Esteyco. The floaters are designed within the Horizon 2020 project COREWIND. Later in the paper, the responses of both models to wind and second-order waves are analysed with an emphasis on the effect of second-order waves.
This paper introduces the numerical models of two 15 MW floating offshore wind turbines (FOWTs)...
Altmetrics
Final-revised paper
Preprint