Articles | Volume 6, issue 3
Wind Energ. Sci., 6, 867–883, 2021
https://doi.org/10.5194/wes-6-867-2021
Wind Energ. Sci., 6, 867–883, 2021
https://doi.org/10.5194/wes-6-867-2021

Research article 08 Jun 2021

Research article | 08 Jun 2021

Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves

Mohammad Youssef Mahfouz et al.

Related authors

Pathways to bring the costs down of floating offshore wind farms in the Atlantic Area
Juan José Cartelle-Barros, David Cordal-Iglesias, Eugenio Baita-Saavedra, Almudena Filgueira-Vizoso, Bernardino Couñago-Lorenzo, Fernando Vigara, Carlos Cortés, Lara Cerdán, Javier Nieto, José Serna, and Laura Castro-Santos
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-73,https://doi.org/10.5194/wes-2019-73, 2019
Publication in WES not foreseen
Performance study of the QuLAF pre-design model for a 10 MW floating wind turbine
Freddy J. Madsen, Antonio Pegalajar-Jurado, and Henrik Bredmose
Wind Energ. Sci., 4, 527–547, https://doi.org/10.5194/wes-4-527-2019,https://doi.org/10.5194/wes-4-527-2019, 2019
Short summary
An efficient frequency-domain model for quick load analysis of floating offshore wind turbines
Antonio Pegalajar-Jurado, Michael Borg, and Henrik Bredmose
Wind Energ. Sci., 3, 693–712, https://doi.org/10.5194/wes-3-693-2018,https://doi.org/10.5194/wes-3-693-2018, 2018
Short summary
A model for quick load analysis for monopile-type offshore wind turbine substructures
Signe Schløer, Laura Garcia Castillo, Morten Fejerskov, Emanuel Stroescu, and Henrik Bredmose
Wind Energ. Sci., 3, 57–73, https://doi.org/10.5194/wes-3-57-2018,https://doi.org/10.5194/wes-3-57-2018, 2018
Short summary

Related subject area

Aerodynamics and hydrodynamics
UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion
Alessandro Fontanella, Ilmas Bayati, Robert Mikkelsen, Marco Belloli, and Alberto Zasso
Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021,https://doi.org/10.5194/wes-6-1169-2021, 2021
Short summary
Vertical-axis wind-turbine computations using a 2D hybrid wake actuator-cylinder model
Edgar Martinez-Ojeda, Francisco Javier Solorio Ordaz, and Mihir Sen
Wind Energ. Sci., 6, 1061–1077, https://doi.org/10.5194/wes-6-1061-2021,https://doi.org/10.5194/wes-6-1061-2021, 2021
Short summary
Maximal power per device area of a ducted turbine
Nojan Bagheri-Sadeghi, Brian T. Helenbrook, and Kenneth D. Visser
Wind Energ. Sci., 6, 1031–1041, https://doi.org/10.5194/wes-6-1031-2021,https://doi.org/10.5194/wes-6-1031-2021, 2021
Short summary
How realistic are the wakes of scaled wind turbine models?
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021,https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Wind tunnel testing of a swept tip shape and comparison with multi-fidelity aerodynamic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-48,https://doi.org/10.5194/wes-2021-48, 2021
Revised manuscript under review for WES
Short summary

Cited articles

Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Tech. rep., National Renewable Energy Laboratory, available at: https://www.nrel.gov/docs/fy20osti/76773.pdf (last access: 16 April 2021), 2020. a
ANSYS: Aqwa Theory Manual, Ansys, available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/prod_page.html?pn=Aqwa&pid=Aqwa&lang=en (last access: 20 December 2020), 2015. a
Campos, A., Molins, C., Gironella, X., Trubat, P., and Alarcón, D.: Experimental RAO's analysis of a monolithic concrete spar structure for offshore floating wind turbines, in: Vol. 1: Offshore Technology, Offshore Geotechnics, Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, 31 May–5 June 2015, St. John's, Newfoundland, Canada, V001T01A016, https://doi.org/10.1115/OMAE2015-41891, 2015. a
Campos, A., Molins, C., Gironella, X., and Trubat, P.: Spar concrete monolithic design for offshore wind turbines, P. I. Civil Eng.-Mar. En., 169, 49–63, https://doi.org/10.1680/jmaen.2014.24, 2016. a
Coulling, A. J., Goupee, A. J., Robertson, A. N., and Jonkman, J. M.: Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a FAST Semi-Submersible Floating Wind Turbine Model, in: Vol. 8: Ocean Renewable Energy, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. 9–14 June 2013, Nantes, France, V008T09A019, https://doi.org/10.1115/OMAE2013-10308, 2013. a
Download
Short summary
This paper introduces the numerical models of two 15 MW floating offshore wind turbines (FOWTs) WindCrete and Activefloat. WindCrete is a spar floating platform designed by Universitat Politècnica de Catalunya, while Activefloat is a semi-submersible platform designed by Esteyco. The floaters are designed within the Horizon 2020 project COREWIND. Later in the paper, the responses of both models to wind and second-order waves are analysed with an emphasis on the effect of second-order waves.