Articles | Volume 5, issue 3
Wind Energ. Sci., 5, 1037–1058, 2020
https://doi.org/10.5194/wes-5-1037-2020
Wind Energ. Sci., 5, 1037–1058, 2020
https://doi.org/10.5194/wes-5-1037-2020
Research article
20 Aug 2020
Research article | 20 Aug 2020

An improved second-order dynamic stall model for wind turbine airfoils

Galih Bangga et al.

Related authors

Current status and grand challenges for small wind turbine technology
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022,https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Progress in validation of rotor aerodynamic codes using field data
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-51,https://doi.org/10.5194/wes-2022-51, 2022
Preprint under review for WES
Short summary
Aeroelastic analysis of wind turbines under turbulent inflow conditions
Giorgia Guma, Galih Bangga, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 6, 93–110, https://doi.org/10.5194/wes-6-93-2021,https://doi.org/10.5194/wes-6-93-2021, 2021
Short summary
Performance analysis of a Darrieus-type wind turbine for a series of 4-digit NACA airfoils
Krzysztof Rogowski, Martin Otto Laver Hansen, and Galih Bangga
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-98,https://doi.org/10.5194/wes-2019-98, 2019
Preprint withdrawn
Short summary
An investigation of unsteady 3-D effects on trailing edge flaps
Eva Jost, Annette Fischer, Galih Bangga, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 2, 241–256, https://doi.org/10.5194/wes-2-241-2017,https://doi.org/10.5194/wes-2-241-2017, 2017
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Adema, N., Kloosterman, M., and Schepers, G.: Development of a second-order dynamic stall model, Wind Energ. Sci., 5, 577–590, https://doi.org/10.5194/wes-5-577-2020, 2020. a, b, c, d, e, f, g, h, i
Bangga, G.: Three-Dimensional Flow in the Root Region of Wind Turbine Rotors, Kassel University Press GmbH, Kassel, https://doi.org/10.19211/KUP9783737605373, 2018. a
Bangga, G.: Numerical studies on dynamic stall characteristics of a wind turbine airfoil, J. Mech. Sci. Technol., 33, 1257–1262, https://doi.org/10.1007/s12206-019-0225-1, 2019. a
Beddoes, T.: Practical computation of unsteady lift, in: 8th European Rotorcraft Forum, Aix-en-Provence, France, 1982. a, b, c
Carr, L. W., McAlister, K. W., and McCroskey, W. J.: Analysis of the development of dynamic stall based on oscillating airfoil experiments, Tech. rep., NASA TN D-8382, National Aeronautics and Space Administration, Washington, D.C., USA, 1977. a
Download
Short summary
Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine load calculations despite its long research effort in the past. The present paper describes a new second-order dynamic stall model for wind turbine airfoils. The new model is robust and improves the prediction for the aerodynamic forces and their higher-harmonic effects due to vortex shedding but also provides improved predictions for pitching moment and drag.