Articles | Volume 6, issue 3
https://doi.org/10.5194/wes-6-627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Department of Wind Energy, Technical University of Denmark,
Risø Campus, 4000, Roskilde, Denmark
Niels Nørmark Sørensen
Department of Wind Energy, Technical University of Denmark,
Risø Campus, 4000, Roskilde, Denmark
Sergio González Horcas
Department of Wind Energy, Technical University of Denmark,
Risø Campus, 4000, Roskilde, Denmark
Niels Troldborg
Department of Wind Energy, Technical University of Denmark,
Risø Campus, 4000, Roskilde, Denmark
Frederik Zahle
Department of Wind Energy, Technical University of Denmark,
Risø Campus, 4000, Roskilde, Denmark
Related authors
Christian Grinderslev, Felix Houtin-Mongrolle, Niels Nørmark Sørensen, Georg Raimund Pirrung, Pim Jacobs, Aqeel Ahmed, and Bastien Duboc
Wind Energ. Sci., 8, 1625–1638, https://doi.org/10.5194/wes-8-1625-2023, https://doi.org/10.5194/wes-8-1625-2023, 2023
Short summary
Short summary
In standstill conditions wind turbines are at risk of vortex-induced vibrations (VIVs). VIVs can become large and lead to significant fatigue of the wind turbine structure over time. Thus it is important to have tools that can accurately compute this complex phenomenon. This paper studies the sensitivities to the chosen models of computational fluid dynamics (CFD) simulations when modelling VIVs and finds that much care is needed when setting up simulations, especially for specific flow angles.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Christian Grinderslev, Niels Nørmark Sørensen, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 2201–2213, https://doi.org/10.5194/wes-7-2201-2022, https://doi.org/10.5194/wes-7-2201-2022, 2022
Short summary
Short summary
As wind turbines increase in size, the risk of flow-induced instabilities increases. This study investigates the phenomenon of vortex-induced vibrations (VIVs) on a large 10 MW wind turbine blade using two high-fidelity methods. It is found that VIVs can occur with multiple equilibrium states for the same flow case, showing an dependence on the initial conditions. This means that a blade which is stable in a flow can become unstable if, e.g., a turbine operation provokes an initial vibration.
Clemens Paul Zengler, Niels Troldborg, and Mac Gaunaa
Wind Energ. Sci., 10, 1485–1497, https://doi.org/10.5194/wes-10-1485-2025, https://doi.org/10.5194/wes-10-1485-2025, 2025
Short summary
Short summary
Wind turbine power performance is mostly calculated based on the wind speed measured at the turbine position. The presented results imply that it is necessary to also assess how the undisturbed wind speed changes in the flow direction to accurately predict the power performance. In other words, the acceleration of the flow is relevant for the energy production. An outcome of this work is a simple model that can be used to include flow acceleration in power performance predictions.
Nanako Sasanuma, Akihiro Honda, Christian Bak, Niels Troldborg, Mac Gaunaa, Morten Nielsen, and Teruhisa Shimada
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-130, https://doi.org/10.5194/wes-2025-130, 2025
Preprint under review for WES
Short summary
Short summary
We verify wake effects between two turbines in complex terrain using Supervisory Control and Data Acquisition data. By identifying “wake conditions” and “no-wake conditions” by the blade pitch angle of the upstream wind turbine, we evaluate wake effects on wind speed, turbulent intensity, and power output. Results show that flow downhill has a significant impact on wake effects compared to flow uphill. The method offers a practical alternative to field measurements in complex terrain.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Christian Grinderslev, Felix Houtin-Mongrolle, Niels Nørmark Sørensen, Georg Raimund Pirrung, Pim Jacobs, Aqeel Ahmed, and Bastien Duboc
Wind Energ. Sci., 8, 1625–1638, https://doi.org/10.5194/wes-8-1625-2023, https://doi.org/10.5194/wes-8-1625-2023, 2023
Short summary
Short summary
In standstill conditions wind turbines are at risk of vortex-induced vibrations (VIVs). VIVs can become large and lead to significant fatigue of the wind turbine structure over time. Thus it is important to have tools that can accurately compute this complex phenomenon. This paper studies the sensitivities to the chosen models of computational fluid dynamics (CFD) simulations when modelling VIVs and finds that much care is needed when setting up simulations, especially for specific flow angles.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023, https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Short summary
We present an analytical vortex model. Despite its simplicity, the model is fully consistent with 1D momentum theory. It shows that the flow through a non-uniformly loaded rotor operating in non-uniform inflow behaves locally as predicted by 1D momentum theory. As a consequence, the local power coefficient (based on local inflow) of an ideal rotor is unaltered by the presence of shear. Finally, the model shows that there is no cross-shear deflection of the wake of a rotor in sheared inflow.
Brandon Arthur Lobo, Özge Sinem Özçakmak, Helge Aagaard Madsen, Alois Peter Schaffarczyk, Michael Breuer, and Niels N. Sørensen
Wind Energ. Sci., 8, 303–326, https://doi.org/10.5194/wes-8-303-2023, https://doi.org/10.5194/wes-8-303-2023, 2023
Short summary
Short summary
Results from the DAN-AERO and aerodynamic glove projects provide significant findings. The effects of inflow turbulence on transition and wind turbine blades are compared to computational fluid dynamic simulations. It is found that the transition scenario changes even over a single revolution. The importance of a suitable choice of amplification factor is evident from the simulations. An agreement between the power spectral density plots from the experiment and large-eddy simulations is seen.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Christian Grinderslev, Niels Nørmark Sørensen, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 2201–2213, https://doi.org/10.5194/wes-7-2201-2022, https://doi.org/10.5194/wes-7-2201-2022, 2022
Short summary
Short summary
As wind turbines increase in size, the risk of flow-induced instabilities increases. This study investigates the phenomenon of vortex-induced vibrations (VIVs) on a large 10 MW wind turbine blade using two high-fidelity methods. It is found that VIVs can occur with multiple equilibrium states for the same flow case, showing an dependence on the initial conditions. This means that a blade which is stable in a flow can become unstable if, e.g., a turbine operation provokes an initial vibration.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022, https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
Short summary
An aeroelastically optimized curved wind turbine blade tip is designed, manufactured, and tested on a novel outdoor rotating rig facility at the Risø campus of the Technical University of Denmark. Detailed aerodynamic measurements for various atmospheric conditions and results are compared to a series of in-house aeroelastic tools with a range of fidelities in aerodynamic modeling. The comparison highlights details in the ability of the codes to predict the performance of such a curved tip.
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022, https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
Mads H. Aa. Madsen, Frederik Zahle, Sergio González Horcas, Thanasis K. Barlas, and Niels N. Sørensen
Wind Energ. Sci., 7, 1471–1501, https://doi.org/10.5194/wes-7-1471-2022, https://doi.org/10.5194/wes-7-1471-2022, 2022
Short summary
Short summary
This work presents a shape optimization framework based on computational fluid dynamics. The design framework is used to optimize wind turbine blade tips for maximum power increase while avoiding that extra loading is incurred. The final results are shown to align well with related literature. The resulting tip shape could be mounted on already installed wind turbines as a sleeve-like solution or be conceived as part of a modular blade with tips designed for site-specific conditions.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022, https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
Short summary
A consistent method of using two-dimensional airfoil data when using generalized lifting-line methods for the aerodynamic load calculation of non-planar horizontal-axis wind turbines is described. The important conclusions from the unsteady two-dimensional airfoil aerodynamics are highlighted. The impact of using a simplified approach instead of using the full model on the prediction of the aerodynamic performance of non-planar rotors is shown numerically for different aerodynamic models.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Ang Li, Georg Raimund Pirrung, Mac Gaunaa, Helge Aagaard Madsen, and Sergio González Horcas
Wind Energ. Sci., 7, 129–160, https://doi.org/10.5194/wes-7-129-2022, https://doi.org/10.5194/wes-7-129-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for the swept horizontal-axis wind turbine blades is proposed. It uses a combination of analytical results and engineering approximations. The performance of the model is comparable with heavier high-fidelity models but has similarly low computational cost as currently used low-fidelity models. The model could be used for an efficient and accurate load calculation of swept wind turbine blades and could eventually be integrated in a design optimization framework.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 75–104, https://doi.org/10.5194/wes-7-75-2022, https://doi.org/10.5194/wes-7-75-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for non-planar horizontal-axis wind turbines is proposed. The performance of the model is comparable with high-fidelity models but has similarly low computational cost as currently used low-fidelity models, which do not have the capability to model non-planar rotors. The developed model could be used for an efficient and accurate load calculation of non-planar wind turbines and eventually be integrated in a design optimization framework.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021, https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Short summary
Curved blade tips can potentially have a significant impact on wind turbine performance and loads. A swept tip shape optimized for wind turbine applications is tested in a wind tunnel. A range of numerical aerodynamic simulation tools with various levels of fidelity are compared. We show that all numerical tools except for the simplest blade element momentum based are in good agreement with the measurements, suggesting the required level of model fidelity necessary for the design of such tips.
Thales Fava, Mikaela Lokatt, Niels Sørensen, Frederik Zahle, Ardeshir Hanifi, and Dan Henningson
Wind Energ. Sci., 6, 715–736, https://doi.org/10.5194/wes-6-715-2021, https://doi.org/10.5194/wes-6-715-2021, 2021
Short summary
Short summary
This work develops a simplified framework to predict transition to turbulence on wind-turbine blades. The model is based on the boundary-layer and parabolized stability equations, including rotation and three-dimensionality effects. We show that these effects may promote transition through highly oblique Tollmien–Schlichting (TS) or crossflow modes at low radii, and they should be considered for a correct transition prediction. At high radii, transition tends to occur through 2D TS modes.
Thanasis Barlas, Néstor Ramos-García, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 6, 491–504, https://doi.org/10.5194/wes-6-491-2021, https://doi.org/10.5194/wes-6-491-2021, 2021
Short summary
Short summary
A method to design advanced tip extensions for modern wind turbine blades is presented in this work. The resulting design concept has high potential in terms of actual implementation in a real rotor upscaling with a potential business case in reducing the cost of energy produced by future large wind turbine rotors.
Gesine Wanke, Leonardo Bergami, Frederik Zahle, and David Robert Verelst
Wind Energ. Sci., 6, 203–220, https://doi.org/10.5194/wes-6-203-2021, https://doi.org/10.5194/wes-6-203-2021, 2021
Short summary
Short summary
This article regards a rotor redesign for a wind turbine in upwind and in downwind rotor configurations. A simple optimization tool is used to estimate the aerodynamic planform, as well as the structural mass distribution of the rotor blade. The designs are evaluated in full load base calculations according to the IEC standard with the aeroelastic tool HAWC2. A scaling model is used to scale turbine and energy costs from the design loads and compare the costs for the turbine configurations.
Özge Sinem Özçakmak, Helge Aagaard Madsen, Niels Nørmark Sørensen, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1487–1505, https://doi.org/10.5194/wes-5-1487-2020, https://doi.org/10.5194/wes-5-1487-2020, 2020
Short summary
Short summary
Accurate prediction of the laminar-turbulent transition process is critical for design and prediction tools to be used in the industrial design process, particularly for the high Reynolds numbers experienced by modern wind turbines. Laminar-turbulent transition behavior of a wind turbine blade section is investigated in this study by means of field experiments and 3-D computational fluid dynamics (CFD) rotor simulations.
Cited articles
Bak, C., Johansen, J., and Andersen, P.: Three-dimensional corrections of
airfoil characteristics based on pressure distributions (paper and poster),
in: Proceedings (online), European Wind Energy Association (EWEA), 2006
European Wind Energy Conference and Exhibition, EWEC 2006,
27 February–2 March 2006, available at: https://orbit.dtu.dk/en/publications/three-dimensional-corrections-of-airfoil-characteristics-based-on
(last access: 3 March 2021), 2006. a
Bak, C., Madsen, H., Paulsen, U. S., Gaunaa, M., Sørensen, N., Fuglsang, P.,
Romblad, J., Olsen, N., Enevoldsen, P., Laursen, J., and Jensen, L.: DAN-AERO MW: Detailed aerodynamic measurements on a full scale MW wind turbine, in: European Wind Energy Conference and Exhibition 2010, 2, Ewec 2010, 20–23 April 2010, Warsaw, Poland, 792–836, 2010. a
Bak, C., Troldborg, N., and Madsen, H.: DAN-AERO MW: Measured airfoil
characteristics for a MW rotor in atmospheric conditions, in: Scientific
Proceedings, European Wind Energy Association (EWEA), 4–17 March 2011, 171–175, available at: https://orbit.dtu.dk/en/publications/dan-aero-mw-measured-airfoil-characteristics-for-a-mw-rotor-in-at
(last access: 3 May 2021), 2011. a
Bak, C., Madsen, H., Troldborg, N., and Wedel-Heinen, J.: DANAERO MW: Data for the NM80 turbine at Tjæreborg Enge for aeroelastic evaluation, Tech. rep., Technical University of Denmark, Denmark, 2013. a
Bechmann, A., Sørensen, N., and Zahle, F.: CFD simulations of the MEXICO
rotor, Wind Energy, 14, 677–689, 2011. a
Berg, J., Natarajan, A., Mann, J., and Patton, E.: Gaussian vs non-Gaussian
turbulence: impact on wind turbine loads, Wind Energy, 19, 1975–1989,
https://doi.org/10.1002/we.1963, 2016. a
Deardorff, J. W.: Numerical Investigation of Neutral and Unstable Planetary
Boundary Layers, J. Atmosl. Sci., 29, 91–115,
https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2, 1972. a, b
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527,
https://doi.org/10.1007/BF00119502, 1980. a
Egorov, Y., Menter, F. R., Lechner, R., and Cokljat, D.: The scale-adaptive
simulation method for unsteady turbulent flow predictions. part 2:
Application to complex flows, Flow Turbul. Combust., 85, 139–165,
https://doi.org/10.1007/s10494-010-9265-4, 2010. a
García Ramos, N., Sessarego, M., and Horcas, S. G.: Aero–hydro–servo–elastic coupling of a multi-body finite-element solver and a multi-fidelity vortex method, Wind Energy, 24, 481–501, https://doi.org/10.1002/we.2584, 2021. a
Glauert, H.: Airplane Propellers, Division L, in: Aerodynamic Theory 4,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-91487-4_3, 1935. a
Grinderslev, C., Belloni, F., Horcas, S., and Sørensen, N.: Investigations
of aerodynamic drag forces during structural blade testing using
high-fidelity fluid–structure interaction, Wind Energ. Sci., 5, 543–560,
https://doi.org/10.5194/wes-5-543-2020, 2020a. a
Grinderslev, C., Vijayakumar, G., Ananthan, S., Sørensen, N., Zahle, F., and Sprague, M.: Validation of blade-resolved computational fluid dynamics for a MW-scale turbine rotor in atmospheric flow, J. Phys.: Conf. Ser., 1618, 052049, https://doi.org/10.1088/1742-6596/1618/5/052049, 2020b. a
Gritskevich, M. S., Garbaruk, A. V., Schütze, J., and Menter, F. R.:
Development of DDES and IDDES formulations for the k–ω shear stress
transport model, Flow Turbul. Combust., 88, 431–449,
https://doi.org/10.1007/s10494-011-9378-4, 2012. a
Grötzbach, G.: Direct numerical and large eddy simulation of turbulent
channel flows, Encycloped. Fluid Mech., 6, 1337–1391, 1987. a
Guma, G., Bangga, G., Lutz, T., and Krämer, E.: Aeroelastic analysis of wind turbines under turbulent inflow conditions, Wind Energ. Sci., 6, 93–110, https://doi.org/10.5194/wes-6-93-2021, 2021. a, b
Hansen, M., Gaunaa, M., and Madsen, H.: A Beddoes-Leishman type dynamic stall
model in state-space and indicial formulations, Tech. rep., Risø National
Laboratory, Risø, Denmark, 2004. a
Heinz, J., Sørensen, N., Zahle, F., and Skrzypinski, W.: Vortex-induced
vibrations on a modern wind turbine blade, Wind Energy, 19, 2041–2051,
https://doi.org/10.1002/we.1967, 2016b. a
Horcas, S., Barlas, T., Zahle, F., and Sørensen, N.: Vortex induced vibrations of wind turbine blades: Influence of the tip geometry, Phys. Fluids, 32, 065104, https://doi.org/10.1063/5.0004005, 2020. a
Hunt, J. C. R., Wray, A. A., and Moin, P.: Eddies, streams, and convergence
zones in turbulent flows, Studying Turbulence Using Numerical Simulation
Databases, NASA, USA, 193–208, 1988. a
Jonkman, J. M. and Buhl, M. L. J.: FAST User's Guide, Tech. rep., National
Renewable Energy Laboratory, National Renewable Energy Laboratory Golden,
Colorado, 2005. a
Lee, S., Churchfield, M. J., Moriarty, P. J., Jonkman, J., and Michalakes, J.: A numerical study of atmospheric and wake turbulence impacts on wind turbine fatigue loadings, T. ASME J. Sol. Energ. Eng., 135, 1–10, https://doi.org/10.1115/1.4023319, 2013. a
Li, Y., Castro, A. M., Sinokrot, T., Prescott, W., and Carrica, P. M.: Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence, Renew. Energy, 76, 338–361,
https://doi.org/10.1016/j.renene.2014.11.014, 2015. a
Madsen, H. A., Larsen, T. J., Pirrung, G. R., Li, A., and Zahle, F.: Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact, Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020, 2020. a, b
Mann, J.: Wind field simulation, Probabil. Eng. Mech., 13, 269–282, https://doi.org/10.1016/S0266-8920(97)00036-2, 1998. a
Menter, F.: Zonal Two Equation Kappa–Omega Turbulence Models for Aerodynamic
Flows, in: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, https://doi.org/10.2514/6.1993-2906, 1993. a, b
Menter, F., Kuntz, M., and Langtry, R.: Ten years of industrial experience with the SST turbulence model, Heat Mass Transf., 4, 1–8, 2003. a
Moeng, C.: A Large-Eddy-Simulation Model For The Study OF Planetary Boundary-Layer Turbulence, J. Atmos. Sci., 41, 2052–2062, 1984. a
Pavese, C., Wang, Q., Kim, T., Jonkman, J., and Sprague, M.: HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks, in: Proceedings of the EWEA Annual Event and Exhibition 2015, European Wind Energy Association (EWEA), EWEA Annual Conference and Exhibition 2015, 17–20 November 2015, Paris, France, 2015. a
Santo, G., Peeters, M., Van Paepegem, W., and Degroote, J.: Effect of
rotor–tower interaction, tilt angle, and yaw misalignment on the
aeroelasticity of a large horizontal axis wind turbine with composite blades,
Wind Energy, 23, 1578–1595, https://doi.org/10.1002/we.2501, 2020a. a, b
Santo, G., Peeters, M., Van Paepegem, W., and Degroote, J.: Fluid–Structure
Interaction Simulations of a Wind Gust Impacting on the Blades of a Large
Horizontal Axis Wind Turbine, Energies, 13, 509, https://doi.org/10.3390/en13030509, 2020b. a, b
Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., 18, 376–404, 1975. a
Shen, W., Michelsen, J., Sørensen, N., and Sørensen, J.: An improved
SIMPLEC method on collocated grids for steady and unsteady flow computations,
Numer. Heat Transf. Pt. B, 43, 221–239, 2003. a
Shur, M. L., Spalart, P. R., Strelets, M. K., and Travin, A. K.: A hybrid
RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int. J. Heat Fluid Flow, 29, 1638–1649, https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001, 2008. a, b
Sørensen, J. N. and Shen, W. Z.: Numerical Modeling of Wind Turbine Wakes,
J. Fluids Eng., 124, 393–399, https://doi.org/10.1115/1.1471361, 2002. a
Sørensen, J. N., Mikkelsen, R. F., Henningson, D. S., Ivanell, S., Sarmast, S., and Andersen, S. J.: Simulation of wind turbine wakes using the actuator line technique, Philos. T. Roy. Soc. A, 373, 20140071,
https://doi.org/10.1098/rsta.2014.0071, 2015. a
Sørensen, N.: HypGrid2D. A 2-d mesh generator, Tech. rep., Risø National Laboratory, Risø, Denmark, 1998. a
Sørensen, N. and Schreck, S.: Transitional DDES computations of the NREL
Phase-VI rotor in axial flow conditions, J. Phys.: Conf. Ser., 555, 012096, https://doi.org/10.1088/1742-6596/555/1/012096, 2014. a
Sørensen, N., Zahle, F., Boorsma, K., and Schepers, G.: CFD computations
of the second round of MEXICO rotor measurements, J. Phys.: Conf. Ser., 753, 022054, https://doi.org/10.1088/1742-6596/753/2/022054, 2016. a
Sørensen, N. N., Michelsen, J. A., and Schreck, S.: Navier–Stokes
predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel, Wind Energy, 5, 151–169, https://doi.org/10.1002/we.64, 2002.
a
Spalart, P., Jou, W., Strelets, M., and Allmaras, S.: Comments on the
Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, in: International conference, 1st Advances in DNS/LES: Direct numerical simulation and large eddy simulation, Greyden Press, USA, 1997. a
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., and
Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theor. Comput. Fluid Dynam., 20, 181–195, https://doi.org/10.1007/s00162-006-0015-0, 2006. a
Sprague, M., Ananthan, S., Vijayakumar, G., and Robinson, M.: ExaWind: A
multi-fidelity modeling and simulation environment for wind energy, in:
Proceedings of NAWEA WindTech, 14–16 October 2019, Amherst, Massachusetts, USA, 2019. a
Strelets, M.: Detached eddy simulation of massively separated flows, in: 39th Aerospace Sciences Meeting and Exhibit, 8–11 January 2001, Reno, USA, 2001. a
Travin, A., Shur, M., Strelets, M., and Spalart, P. R.: Physical and numerical upgrades in the Detached-Eddy Simulation of complex turbulent flows, Fluid Mech. Appl., 65, 239–254, 2004. a
Troldborg, N., Zahle, F., Réthoré, P., and Sørensen, N.: Comparison of wind turbine wake properties in non‐sheared inflow predicted by different
computational fluid dynamics rotor models, Wind Energy, 18, 1239–1250,
https://doi.org/10.1002/we.1757, 2015. a
Vijayakumar, G.: Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD, PhD Thesis, The Pennsylvania State University, USA, 2015. a
Vijayakumar, G. J. B., Lavely, A., Jayaraman, B., and Craven, B.: Interaction
of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5 MW Wind
Turbine using Blade-boundary-layer-resolved CFD with hybrid URANS-LES,
in: 34th Wind Energy Symposium, 4–8 January 2016, San Diego, California, USA, https://doi.org/10.2514/6.2016-0521, 2016. a, b
Zahle, F., Sørensen, N., and Johansen, J.: Wind Turbine Rotor-Tower
Interaction Using an Incompressible Overset Grid Method, Wind Energy, 12,
594–619, https://doi.org/10.1002/we.327, 2009. a, b
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic...
Altmetrics
Final-revised paper
Preprint