Articles | Volume 5, issue 2
https://doi.org/10.5194/wes-5-577-2020
https://doi.org/10.5194/wes-5-577-2020
Research article
 | 
15 May 2020
Research article |  | 15 May 2020

Development of a second-order dynamic stall model

Niels Adema, Menno Kloosterman, and Gerard Schepers

Related authors

Progress in the validation of rotor aerodynamic codes using field data
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023,https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
A comparison of dynamic inflow models for the blade element momentum method
Simone Mancini, Koen Boorsma, Gerard Schepers, and Feike Savenije
Wind Energ. Sci., 8, 193–210, https://doi.org/10.5194/wes-8-193-2023,https://doi.org/10.5194/wes-8-193-2023, 2023
Short summary
Computational fluid dynamics (CFD) modeling of actual eroded wind turbine blades
Kisorthman Vimalakanthan, Harald van der Mijle Meijer, Iana Bakhmet, and Gerard Schepers
Wind Energ. Sci., 8, 41–69, https://doi.org/10.5194/wes-8-41-2023,https://doi.org/10.5194/wes-8-41-2023, 2023
Short summary
Current status and grand challenges for small wind turbine technology
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022,https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Experimental analysis of the dynamic inflow effect due to coherent gusts
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022,https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Choudry, A., Leknys, R., Arjomandi, M., and Kelso, R.: An insight into the dynamic stall lift characteristics, J. Exp. Therm. Fluid Sci., 58, 188–208, https://doi.org/10.1016/j.expthermflusci.2014.07.006, 2014. 
De Vaal, J. B.: Heuristic modelling of dynamic stall for wind turbines, MSc Thesis, TU Delft, Delft, the Netherlands, 2009. 
DNV GL: Loads and site conditions for wind turbines, Standard DNVGL-ST-0437, available at: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-11/DNVGL-ST-0437.pdf (last access: 7 November 2018), 2016. 
Gonzalez, A. and Munduate, X.: Unsteady modelling of the oscillating S809 aerofoil and NREL phase VI parked blade using the Beddoes–Leishman dynamic stall model, J. Phys.: Conf. Ser., 75, 012020, https://doi.org/10.1088/1742-6596/75/1/012020, 2007. 
Hoffmann, M. J., Reuss Ramsay, R., and Gregorek, G. M.: Effects of Grit Roughness and Pitch Oscillations on the NACA 4415 Airfoil, Technical Report NREL/TP-422-7815, available at: https://wind.nrel.gov/airfoils/OSU_data/reports/3x5/n4415.pdf (last access: 3 September 2018), 1996. 
Short summary
It is crucial to model dynamic stall accurately to reduce inaccuracies in predicting fatigue and extreme loads. This paper investigates a new dynamic stall model. Improvements are proposed based on experiments. The updated model shows significant improvements over the initial model; however, further validation and research are still required. This updated model might be incorporated into future wind turbine design codes and will hopefully reduce inaccuracies in predicted wind turbine loads.
Altmetrics
Final-revised paper
Preprint