Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-75-2022
https://doi.org/10.5194/wes-7-75-2022
Research article
 | 
20 Jan 2022
Research article |  | 20 Jan 2022

A computationally efficient engineering aerodynamic model for non-planar wind turbine rotors

Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas

Related authors

Computationally efficient aerodynamic modeling of swept wind turbine blades using coupled near wake and vortex cylinder models
Ang Li, Mac Gaunaa, and Georg Raimund Pirrung
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-109,https://doi.org/10.5194/wes-2025-109, 2025
Preprint under review for WES
Short summary
Disentangling wake and projection effects in the aerodynamics of wind turbines with curved blades
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Kenneth Lønbæk
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-30,https://doi.org/10.5194/wes-2025-30, 2025
Revised manuscript accepted for WES
Short summary
Atmospheric rotating rig testing of a swept blade tip and comparison with multi-fidelity aeroelastic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022,https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
How should the lift and drag forces be calculated from 2-D airfoil data for dihedral or coned wind turbine blades?
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022,https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
A computationally efficient engineering aerodynamic model for swept wind turbine blades
Ang Li, Georg Raimund Pirrung, Mac Gaunaa, Helge Aagaard Madsen, and Sergio González Horcas
Wind Energ. Sci., 7, 129–160, https://doi.org/10.5194/wes-7-129-2022,https://doi.org/10.5194/wes-7-129-2022, 2022
Short summary

Cited articles

Bergami, L. and Gaunaa, M.: ATEFlap Aerodynamic Model, a dynamic stall model including the effects of trailing edge flap deflection, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, 52 pp., ISBN 8755039340, 9788755039346, 2012. a
Bortolotti, P., Tarrés, H. C., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., NREL – National Renewable Energy Laboratory [data set], available at: https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy -wp2-reference-wind-turbines (last access: 2 April 2021), 2019. a, b, c, d
Branlard, E.: Wind Turbine Aerodynamics and Vorticity-Based Methods, Springer, https://doi.org/10.1007/978-3-319-55164-7, 2017. a
Branlard, E. and Gaunaa, M.: Development of new tip-loss corrections based on vortex theory and vortex methods, J. Phys.: Conf. Ser., 555, 012012, https://doi.org/10.1088/1742-6596/555/1/012012, 2014. a, b
Branlard, E. and Gaunaa, M.: Superposition of vortex cylinders for steady and unsteady simulation of rotors of finite tip-speed ratio, Wind Energy, 19, 1307–1323, https://doi.org/10.1002/we.1899, 2015a. a, b, c, d, e, f, g, h, i, j, k
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
An engineering aerodynamic model for non-planar horizontal-axis wind turbines is proposed. The performance of the model is comparable with high-fidelity models but has similarly low computational cost as currently used low-fidelity models, which do not have the capability to model non-planar rotors. The developed model could be used for an efficient and accurate load calculation of non-planar wind turbines and eventually be integrated in a design optimization framework.
Share
Altmetrics
Final-revised paper
Preprint