Articles | Volume 6, issue 1
https://doi.org/10.5194/wes-6-159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Bart M. Doekemeijer
CORRESPONDING AUTHOR
Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
Stefan Kern
GE Renewable Energy, 85748 Garching, Germany
Sivateja Maturu
GE Renewable Energy, 85748 Garching, Germany
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Stoyan Kanev
TNO Energy Transition, Westerduinweg 3, 1755 LE Petten, the Netherlands
Bastian Salbert
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Johannes Schreiber
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Filippo Campagnolo
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Carlo L. Bottasso
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Simone Schuler
GE Renewable Energy, 85748 Garching, Germany
Friedrich Wilts
UL International GmbH – DEWI, Ebertstrasse 96, 26382 Wilhelmshaven, Germany
Thomas Neumann
UL International GmbH – DEWI, Ebertstrasse 96, 26382 Wilhelmshaven, Germany
Giancarlo Potenza
Enel Green Power, Viale Regina Margherita 125, Rome, Italy
Fabio Calabretta
Enel Green Power, Viale Regina Margherita 125, Rome, Italy
Federico Fioretti
Enel Green Power, Viale Regina Margherita 125, Rome, Italy
Jan-Willem van Wingerden
Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
Related authors
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Short summary
The paper presents a new validation campaign of wake steering at a commercial wind farm. The campaign uses fixed yaw offset positions, rather than a table of optimal yaw offsets dependent on wind direction, to enable comparison with engineering models of wake steering. Additionally, by applying the same offset in beneficial and detrimental conditions, we are able to collect important data for assessing second-order wake model predictions.
Abhinav Anand and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-101, https://doi.org/10.5194/wes-2025-101, 2025
Preprint under review for WES
Short summary
Short summary
We formulate a controller for wind turbines that has three main characteristics. First, it optimizes profit by balancing revenue from power generation with cost. Second, cost includes the effects of cyclic fatigue that, departing from most of the existing literature on control, is rigorously accounted for by an exact cycle counting on receding horizons. Third, it uses a model capable of learning and improving its performance based on measured or synthetic data.
Hadi Hoghooghi and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-98, https://doi.org/10.5194/wes-2025-98, 2025
Preprint under review for WES
Short summary
Short summary
We formulate and demonstrate a new digital shadow (i.e. a virtual copy) for wind turbines. The digital shadow is designed in order to be capable of mirroring the response of the machine even in complex inflow conditions. Results from field measurements illustrate the ability of the shadow to estimate loads with good accuracy, even with minimal tuning.
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 1055–1075, https://doi.org/10.5194/wes-10-1055-2025, https://doi.org/10.5194/wes-10-1055-2025, 2025
Short summary
Short summary
Established turbine wake models are steady-state. This paper presents an open-source dynamic wake modeling framework that complements established steady-state wake models with dynamics. It is advantageous over steady-state wake models to describe wind farm power and energy over shorter periods. The model enables researchers to investigate the effectiveness of wind farm flow control strategies. This leads to a better utilization of wind farms and allows them to be used to their fullest extent.
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-66, https://doi.org/10.5194/wes-2025-66, 2025
Preprint under review for WES
Short summary
Short summary
We proposed a new method for active power control that uniquely combines induction control with wake steering to maximize power tracking margins. Our methodology results in significantly improved robustness against wind fluctuations and fatigue loading when compared to the state of the art.
Andre Thommessen, Abhinav Anand, Christoph M. Hackl, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-72, https://doi.org/10.5194/wes-2025-72, 2025
Preprint under review for WES
Short summary
Short summary
We present a method to forecast inertia that accounts for wake effects in a wind farm. The approach is based on mapping forecasted site conditions to each single wind turbine in the farm through a wake model. The resulting inflow conditions are used to predict the inertia that the wind farm can provide to the grid, taking the wind turbine control strategies and operational limits into account.
Abhinav Anand, Robert Braunbehrens, Adrien Guilloré, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-67, https://doi.org/10.5194/wes-2025-67, 2025
Revised manuscript has not been submitted
Short summary
Short summary
We present a new method for wind farm control, based on the optimization of an economic cost function that accounts for revenue from power production and cost due to operation and maintenance. The new formulation also includes constraints to ensure a desired lifetime duration. The application to relevant scenarios shows consistently improved profit when compared to alternative formulations from the recent literature.
Amr Hegazy, Peter Naaijen, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-68, https://doi.org/10.5194/wes-2025-68, 2025
Preprint under review for WES
Short summary
Short summary
Floating wind turbines face stability issues when traditional onshore control methods are used, due to their motion at sea. This research reviews existing control strategies and introduces a new controller that improves stability without needing extra sensors. Simulations show it outperforms others in maintaining performance and reducing structural stress. The study highlights key trade-offs and the need for smarter, tailored control in offshore wind energy.
Aemilius Adrianus Wilhelmus van Vondelen, Marion Coquelet, Sachin Tejwant Navalkar, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-51, https://doi.org/10.5194/wes-2025-51, 2025
Revised manuscript accepted for WES
Short summary
Short summary
Wind farms suffer energy losses due to wake effects between turbines. We present a new control strategy that synchronizes turbine wakes to enhance power output. By estimating and aligning the phase shifts of periodic wake structures using an advanced filtering method, downstream turbines recover more energy. Simulations show up to 10 % increased power at the third turbine. These results offer a promising path to improving wind farm efficiency while mixing wakes.
Unai Gutierrez Santiago, Aemilius A. W. van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 207–225, https://doi.org/10.5194/wes-10-207-2025, https://doi.org/10.5194/wes-10-207-2025, 2025
Short summary
Short summary
Knowing the loads applied to wind turbine gearboxes throughout their service life is becoming increasingly important as maintaining reliability with higher torque density demands is proving to be challenging. Operational deflection shapes identified from fiber-optic strain measurements have enabled the estimation of input torque, improving the assessment of the consumed life. Tracking operational deflection shapes recursively over time can potentially be used as an indicator of fault detection.
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149, https://doi.org/10.5194/wes-2024-149, 2025
Publication in WES not foreseen
Short summary
Short summary
This paper presents the findings of a study aimed at describing the flow system downstream of a wind turbine operated with a novel control technology. Results from heavy high-fidelity simulations are used to obtain a low-fidelity model that is quick enough to be used for the optimization of such technologies. Additionally, we were able to retrieve an improved understanding of the physics of such systems under different inflow conditions.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024, https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary
Short summary
Wake steering can be integrated into wind farm layout optimization through a co-design approach. This study estimates the potential of this method for a wide range of realistic conditions, adopting a tailored genetic algorithm and novel geometric yaw relations. A gain in the annual energy yield between 0.3 % and 0.4 % is obtained for a 16-tubrine farm, and a multi-objective implementation is used to limit loss in the case that wake steering is not used during farm operation.
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci., 9, 1923–1940, https://doi.org/10.5194/wes-9-1923-2024, https://doi.org/10.5194/wes-9-1923-2024, 2024
Short summary
Short summary
An extended Kalman filter is used to estimate the wind impinging on a wind turbine based on the blade bending moments and a turbine model. Using large-eddy simulations, this paper verifies how robust the estimator is to the turbine control strategy as it impacts loads and operating parameters. It is shown that including dynamics in the turbine model to account for delays between actuation and bending moments is needed to maintain the accuracy of the estimator when dynamic pitch control is used.
Amr Hegazy, Peter Naaijen, Vincent Leroy, Félicien Bonnefoy, Mohammad Rasool Mojallizadeh, Yves Pérignon, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 1669–1688, https://doi.org/10.5194/wes-9-1669-2024, https://doi.org/10.5194/wes-9-1669-2024, 2024
Short summary
Short summary
Successful wave tank experiments were conducted to evaluate the feedforward (FF) control strategy benefits in terms of structural loads and power quality of floating wind turbine components. The wave FF control strategy is effective when it comes to alleviating the effects of the wave forces on the floating offshore wind turbines, whereas wave FF control requires a significant amount of actuation to minimize the platform pitch motion, which makes such technology unfavorable for that objective.
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1547–1575, https://doi.org/10.5194/wes-9-1547-2024, https://doi.org/10.5194/wes-9-1547-2024, 2024
Short summary
Short summary
We develop a new simple model to predict power losses incurred by a wind turbine when it yaws out of the wind. The model reveals the effects of a number of rotor design parameters and how the turbine is governed when it yaws. The model exhibits an excellent agreement with large eddy simulations and wind tunnel measurements. We showcase the capabilities of the model by deriving the power-optimal yaw strategy for a single turbine and for a cluster of wake-interacting turbines.
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024, https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024, https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Short summary
The controller of a wind turbine has an important role in regulating power production and avoiding structural failure. However, it is often designed after the rest of the turbine, and thus its potential is not fully exploited. An alternative is to design the structure and the controller simultaneously. This work develops a method to identify if a given turbine design can benefit from this new simultaneous design process. For example, a higher and cheaper turbine tower can be built this way.
Franz V. Mühle, Florian M. Heckmeier, Filippo Campagnolo, and Christian Breitsamter
Wind Energ. Sci., 9, 1251–1271, https://doi.org/10.5194/wes-9-1251-2024, https://doi.org/10.5194/wes-9-1251-2024, 2024
Short summary
Short summary
Wind turbines influence each other, and these wake effects limit the power production of downstream turbines. Controlling turbines collectively and not individually can limit such effects. We experimentally investigate a control strategy increasing mixing in the wake. We want to see the potential of this so-called Helix control for power optimization and understand the flow physics. Our study shows that the control technique leads to clearly faster wake recovery and thus higher power production.
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024, https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Short summary
Wind turbine wakes negatively affect wind farm performance as they impinge on downstream rotors. Wake steering reduces these losses by redirecting wakes using yaw misalignment of the upstream rotor. We develop a novel control strategy based on model predictions to implement wake steering under time-varying conditions. The controller is tested in a high-fidelity simulation environment and improves wind farm power output compared to a state-of-the-art reference controller.
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024, https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Short summary
This research presents a multi-objective optimisation approach to balance vertical-axis wind turbine (VAWT) performance and noise, comparing the combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking controller with a baseline. Psychoacoustic annoyance is used as a novel metric for human perception of wind turbine noise. Results showcase the WSE–TSR tracking controller’s potential in trading off the considered objectives, thereby fostering the deployment of VAWTs in urban areas.
Maarten J. van den Broek, Delphine De Tavernier, Paul Hulsman, Daan van der Hoek, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1909–1925, https://doi.org/10.5194/wes-8-1909-2023, https://doi.org/10.5194/wes-8-1909-2023, 2023
Short summary
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Helena Canet, Adrien Guilloré, and Carlo L. Bottasso
Wind Energ. Sci., 8, 1029–1047, https://doi.org/10.5194/wes-8-1029-2023, https://doi.org/10.5194/wes-8-1029-2023, 2023
Short summary
Short summary
We propose a new approach to design that aims at optimal trade-offs between economic and environmental goals. New environmental metrics are defined, which quantify impacts in terms of CO2-equivalent emissions produced by the turbine over its entire life cycle. For some typical onshore installations in Germany, results indicate that a 1 % increase in the cost of energy can buy about a 5 % decrease in environmental impacts: a small loss for the individual can lead to larger gains for society.
Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 849–864, https://doi.org/10.5194/wes-8-849-2023, https://doi.org/10.5194/wes-8-849-2023, 2023
Short summary
Short summary
Wind turbines placed in farms interact with their wake, lowering the power production of the wind farm. This can be mitigated using so-called wake mixing techniques. This work investigates the coupling between the pulse wake mixing technique and the motion of floating wind turbines using the pulse. Frequency response experiments and time domain simulations show that extra movement is undesired and that the
optimalexcitation frequency is heavily platform dependent.
Robert Braunbehrens, Andreas Vad, and Carlo L. Bottasso
Wind Energ. Sci., 8, 691–723, https://doi.org/10.5194/wes-8-691-2023, https://doi.org/10.5194/wes-8-691-2023, 2023
Short summary
Short summary
The paper presents a new method in which wind turbines in a wind farm act as local sensors, in this way detecting the flow that develops within the power plant. Through this technique, we are able to identify effects on the flow generated by the plant itself and by the orography of the terrain. The new method not only delivers a flow model of much improved quality but can also help in understanding phenomena that drive the farm performance.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Emmanouil M. Nanos, Carlo L. Bottasso, Simone Tamaro, Dimitris I. Manolas, and Vasilis A. Riziotis
Wind Energ. Sci., 7, 1641–1660, https://doi.org/10.5194/wes-7-1641-2022, https://doi.org/10.5194/wes-7-1641-2022, 2022
Short summary
Short summary
A novel way of wind farm control is presented where the wake is deflected vertically to reduce interactions with downstream turbines. This is achieved by moving ballast in a floating offshore platform in order to pitch the support structure and thereby tilt the wind turbine rotor disk. The study considers the effects of this new form of wake control on the aerodynamics of the steering and wake-affected turbines, on the structure, and on the ballast motion system.
Stefan Loew and Carlo L. Bottasso
Wind Energ. Sci., 7, 1605–1625, https://doi.org/10.5194/wes-7-1605-2022, https://doi.org/10.5194/wes-7-1605-2022, 2022
Short summary
Short summary
This publication presents methods to improve the awareness and control of material fatigue for wind turbines. This is achieved by enhancing a sophisticated control algorithm which utilizes wind prediction information from a laser measurement device. The simulation results indicate that the novel algorithm significantly improves the economic performance of a wind turbine. This benefit is particularly high for situations when the prediction quality is low or the prediction time frame is short.
Daan van der Hoek, Joeri Frederik, Ming Huang, Fulvio Scarano, Carlos Simao Ferreira, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 1305–1320, https://doi.org/10.5194/wes-7-1305-2022, https://doi.org/10.5194/wes-7-1305-2022, 2022
Short summary
Short summary
The paper presents a wind tunnel experiment where dynamic induction control was implemented on a small-scale turbine. By periodically changing the pitch angle of the blades, the low-velocity turbine wake is perturbed, and hence it recovers at a faster rate. Small particles were released in the flow and subsequently recorded with a set of high-speed cameras. This allowed us to reconstruct the flow behind the turbine and investigate the effect of dynamic induction control on the wake.
Emmanouil M. Nanos, Carlo L. Bottasso, Filippo Campagnolo, Franz Mühle, Stefano Letizia, G. Valerio Iungo, and Mario A. Rotea
Wind Energ. Sci., 7, 1263–1287, https://doi.org/10.5194/wes-7-1263-2022, https://doi.org/10.5194/wes-7-1263-2022, 2022
Short summary
Short summary
The paper describes the design of a scaled wind turbine in detail, for studying wakes and wake control applications in the known, controllable and repeatable conditions of a wind tunnel. The scaled model is characterized by conducting experiments in two wind tunnels, in different conditions, using different measurement equipment. Results are also compared to predictions obtained with models of various fidelity. The analysis indicates that the model fully satisfies the initial requirements.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022, https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
Short summary
The objective of the paper is to develop a data-driven output-constrained individual pitch control approach, which will not only mitigate the blade loads but also reduce the pitch activities. This is achieved by only reducing the blade loads violating a user-defined bound, which leads to an economically viable load control strategy. The proposed control strategy shows promising results of load reduction in the wake-rotor overlapping and turbulent sheared wind conditions.
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022, https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
Short summary
The gearbox is one of the main contributors to the overall cost of wind energy, and it is acknowledged that we still do not fully understand its loading. The study presented in this paper develops a new alternative method to measure input rotor torque in wind turbine gearboxes, overcoming the drawbacks related to measuring on a rotating shaft. The method presented in this paper could make measuring gearbox torque more cost-effective, which would facilitate its adoption in serial wind turbines.
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022, https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
Short summary
The damping of an offshore wind turbine is a difficult physical quantity to predict, although it plays a major role in a cost-effective turbine design. This paper presents a review of all approaches that can be used for damping estimation directly from operational wind turbine data. As each use case is different, a novel suitability table is presented to enable the user to choose the most appropriate approach for the given availability and characteristics of measurement data.
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Short summary
The paper presents a new validation campaign of wake steering at a commercial wind farm. The campaign uses fixed yaw offset positions, rather than a table of optimal yaw offsets dependent on wind direction, to enable comparison with engineering models of wake steering. Additionally, by applying the same offset in beneficial and detrimental conditions, we are able to collect important data for assessing second-order wake model predictions.
Helena Canet, Stefan Loew, and Carlo L. Bottasso
Wind Energ. Sci., 6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021, https://doi.org/10.5194/wes-6-1325-2021, 2021
Short summary
Short summary
Lidar-assisted control (LAC) is used to redesign the rotor and tower of three turbines, differing in terms of wind class, size, and power rating. The load reductions enabled by LAC are used to save
mass, increase hub height, or extend lifetime. The first two strategies yield reductions in the cost of energy only for the tower of the largest machine, while more interesting benefits are obtained for lifetime extension.
Stoyan Kanev and Edwin Bot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-71, https://doi.org/10.5194/wes-2021-71, 2021
Publication in WES not foreseen
Short summary
Short summary
Active Wake Control (AWC) is a strategy for operating wind farms in a cooperative manner to maximize the overall power production. The state-of-the-art approach optimizes AWC for static wind conditions, which is sub-optimal in real-life due to the continuous variations of the wind resource and the very slow dynamics of the yaw system that controls the rotor direction. This work develops dynamic robust AWC that considers realistic operating conditions including variabilities and uncertainties.
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021, https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Short summary
This paper quantifies the fidelity of the wakes generated by a small (1 m diameter) scaled wind turbine model operated in a large boundary layer wind tunnel. A detailed scaling analysis accompanied by large-eddy simulations shows that these wakes are very realistic scaled versions of the ones generated by the parent full-scale wind turbine in the field.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Short summary
A previously published wind sensing method is applied to an experimental dataset obtained from a 3.5 MW turbine and a nearby hub-tall met mast. The method uses blade load harmonics to estimate rotor-equivalent shears and wind directions at the rotor disk. Results indicate the good quality of the estimated shear, both in terms of 10 min averages and of resolved time histories, and a reasonable accuracy in the estimation of the yaw misalignment.
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021, https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Short summary
The paper analyzes in detail the problem of scaling, considering both the steady-state and transient response cases, including the effects of aerodynamics, elasticity, inertia, gravity, and actuation. After a general theoretical analysis of the problem, the article considers two alternative ways of designing a scaled rotor. The two methods are then applied to the scaling of a 10 MW turbine of 180 m in diameter down to three different sizes (54, 27, and 2.8 m).
Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1537–1550, https://doi.org/10.5194/wes-5-1537-2020, https://doi.org/10.5194/wes-5-1537-2020, 2020
Short summary
Short summary
A new method is described to identify the aerodynamic characteristics of blade airfoils directly from operational data of the turbine. Improving on a previously published approach, the present method is based on a new maximum likelihood formulation that includes errors both in the outputs and the inputs. The method is demonstrated on the identification of the polars of small-scale turbines for wind tunnel testing.
Filippo Campagnolo, Robin Weber, Johannes Schreiber, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1273–1295, https://doi.org/10.5194/wes-5-1273-2020, https://doi.org/10.5194/wes-5-1273-2020, 2020
Short summary
Short summary
The performance of an open-loop wake-steering controller is investigated with a new wind tunnel experiment. Three scaled wind turbines are placed on a large turntable and exposed to a turbulent inflow, resulting in dynamically varying wake interactions. The study highlights the importance of using a robust formulation and plant flow models of appropriate fidelity and the existence of possible margins for improvement by the use of dynamic controllers.
Cited articles
Adaramola, M. S. and Krogstad, P. A.: Experimental investigation of wake
effects on wind turbine performance, Renew. Energy, 36, 2078–2086,
https://doi.org/10.1016/j.renene.2011.01.024, 2011. a
Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines, Wind
Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018. a
Bastankhah, M. and Fernando, P. A.: Wind farm power optimization via yaw angle control: A wind tunnel study, J. Renew. Sustain. Energ., 11, 023301, https://doi.org/10.1063/1.5077038, 2019. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Boersma, S., Doekemeijer, B. M., Gebraad, P. M. O., Fleming, P. A., Annoni, J., Scholbrock, A., Frederik, J. A., and van Wingerden, J. W.: A tutorial on
control-oriented modeling and control of wind farms, in: American Control
Conference, Seattle, USA, 1–18, https://doi.org/10.23919/ACC.2017.7962923, 2017. a, b
Campagnolo, F., Petrović, V., Bottasso, C. L., and Croce, A.: Wind tunnel
testing of wake control strategies, in: Proceedings of the American Control
Conference (ACC), 6–8 July 2016, Boston, MA, USA, 513–518, https://doi.org/10.1109/ACC.2016.7524965, 2016a. a
Campagnolo, F., Petrović, V., Schreiber, J., Nanos, E. M., Croce, A., and
Bottasso, C. L.: Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization, J. Phys.: Conf. Ser., 753, 032006, https://doi.org/10.1088/1742-6596/753/3/032006, 2016b. a
Crespo, A. and Hernández, J.: Turbulence characteristics in wind-turbine
wakes, J. Wind Eng. Indust. Aerodynam., 61, 71–85,
https://doi.org/10.1016/0167-6105(95)00033-X, 1996. a
Damiani, R., Dana, S., Annoni, J., Fleming, P., Roadman, J., van Dam, J., and
Dykes, K.: Assessment of wind turbine component loads under yaw-offset
conditions, Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018, 2018. a
Doekemeijer, B. M., Fleming, P. A., and van Wingerden, J. W.: A tutorial on the synthesis and validation of a closed-loop wind farm controller using a
steady-state surrogate model, in: American Control Conference, Philadelphia,
USA, https://doi.org/10.23919/ACC.2019.8815126, 2019. a, b
Doekemeijer, B. M., van der Hoek, D. C., and van Wingerden, J. W.: Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions, Renewable Energy, 156, 719–730,
https://doi.org/10.1016/j.renene.2020.04.007, 2020. a
Doekemeijer, B. M., Storm, R., and Schreiber, J.: TUDelft-DataDrivenControl/FLORISSE_M: Stable version from 2018–2019, Zenodo, https://doi.org/10.5281/zenodo.4458669, 2021. a, b
Efron, B. and Tibshirani, R. J.: An introduction to the bootstrap, Chapman & Hall, New York, NY, USA, 1993. a
Ennis, B. L., White, J. R., and Paquette, J. A.: Wind turbine blade load
characterization under yaw offset at the SWiFT facility, J. Phys.: Conf. Ser., 1037, 052001, https://doi.org/10.1088/1742-6596/1037/5/052001, 2018. a
European Commission: Horizon 2020 Project Repository: Closed Loop Wind Farm
Control, available at: https://cordis.europa.eu/project/id/727477, last access: 20 October 2020. a
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020. a, b
Fleming, P. A., Scholbrock, A. K., Jehu, A., Davoust, S., Osler, E., Wright,
A. D., and Clifton, A.: Field-test results using a nacelle-mounted lidar for
improving wind turbine power capture by reducing yaw misalignment, J. Phys.: Conf. Ser., 524, 012002, https://doi.org/10.1088/1742-6596/524/1/012002, 2014. a, b
Fleming, P. A., Annoni, J., Scholbrock, A. K., Quon, E., Dana, S., Schreck, S., Raach, S., Haizmann, F., and Schlipf, D.: Full-scale field test of wake
steering, J. Phys.: Conf. Ser., 854, 012013, https://doi.org/10.1088/1742-6596/854/1/012013, 2017a. a
Fleming, P. A., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z.,
Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of wake steering
at an offshore wind farm, Wind Energ. Sci., 2, 229–239,
https://doi.org/10.5194/wes-2-229-2017, 2017b. a, b
Fleming, P. A., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A. K., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C. J., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake
steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4,
273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a, b, c
Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A.,
Ruben, S. D., Marden, J. R., and Pao, L. Y.: Wind plant power optimization
through yaw control using a parametric model for wake effects – a CFD
simulation study, Wind Energy, 19, 95–114, https://doi.org/10.1002/we.1822, 2016. a, b
Howland, M. F., Lele, S. K., and Dabiri, J. O.: Wind farm power optimization
through wake steering, P. Natl. Acad. Sci. USA, 116, 14495–14500, https://doi.org/10.1073/pnas.1903680116, 2019. a, b
Howland, M. F., Gonzalez, C. M., Martinez, J. J. P., Quesada, J. B., Larranaga, F. P., Yadav, N. K., Chawla, J. S., and Dabiri, J. O.: Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment, J. Renew. Sustain. Energ., 12, 063307, https://doi.org/10.1063/5.0023746, 2020. a, b, c
Kanev, S.: Dynamic wake steering and its impact on wind farm power production
and yaw actuator duty, Renew. Energy, 146, 9–15, https://doi.org/10.1016/j.renene.2019.06.122, 2020. a, b, c, d
Kanev, S. K., Savenije, F. J., and Engels, W. P.: Active wake control: An
approach to optimize the lifetime operation of wind farms, Wind Energy, 21,
488–501, https://doi.org/10.1002/we.2173, 2018. a
Katic, I., Højstrup, J., and Jensen, N.: A Simple Model for Cluster
Efficiency, A Raguzzi, in: European Wind Energy Association Conference and Exhibition 1986, 6–8 October 1986, Rome, Italy, 407–410, 1987. a
Kern, S., Schuler, S., Zettl, M., Busboom, A., Gomez, M., Wilts, F., Neumann, T., and Potenza, G.: CL-Windcon D3.2: Definition of field-testing conditions, CL-Windcon deliverable repository, European Horizon 2020 project, Report no. Ares(2017)5332644, CL-Windcon, Brussels, Belgium, 2017. a
Kheirabadi, A. C. and Nagamune, R.: A quantitative review of wind farm control with the objective of wind farm power maximization, J. Wind Eng. Indust. Aerodynam., 192, 45–73, https://doi.org/10.1016/j.jweia.2019.06.015, 2019. a
Kragh, K. A. and Hansen, M. H.: Load alleviation of wind turbines by yaw
misalignment, Wind Energy, 17, 971–982, https://doi.org/10.1002/we.1612, 2014. a
Kragh, K. A. and Hansen, M. H.: Potential of power gain with improved yaw
alignment, Wind Energy, 18, 979–989, https://doi.org/10.1002/we.1739, 2015. a, b
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a
Mudafort, R. M., Bachant, P., Fleming, K., Hammond, R., Bensason, D., Seim, K. S., Sortland, S., and Martinez, T.: NREL/floris: Updates to GCH V∕W velocities and cut planes, Zenodo, https://doi.org/10.5281/zenodo.4437566, 2021. a
Park, J., Kwon, S. D., and Law, K. H.: A data-driven approach for cooperative
wind farm control, in: 2016 American Control Conference, 6–8 July 2016, Boston, MA, USA, 525–530, https://doi.org/10.1109/ACC.2016.7524967, 2016. a
Rott, A., Doekemeijer, B., Seifert, J. K., van Wingerden, J.-W., and Kühn, M.: Robust active wake control in consideration of wind direction variability and uncertainty, Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, 2018. a, b
Scholbrock, A. K., Fleming, P. A., Wright, A., Slinger, C., Medley, J., and
Harris, M.: Field test results from lidar measured yaw control for improved
power capture with the NREL Controls Advanced Research Turbine, in: 33rd AIAA SciTech Wind Energy Symposium, 5–9 January 2015, Kissimmee, FL, USA, https://doi.org/10.2514/6.2015-1209, 2015. a, b
Schottler, J., Hölling, A., Peinke, J., and Hölling, M.: Wind tunnel tests on controllable model wind turbines in yaw, in: 34th AIAA SciTech Wind Energy Symposium, 4–8 January 2016, San Diego, CA, USA, https://doi.org/10.2514/6.2016-1523, 2016. a
Schreiber, J., Bottasso, C. L., Salbert, B., and Campagnolo, F.: Improving wind farm flow models by learning from operational data, Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, 2020. a
Simley, E., Fleming, P. A., and King, J.: Design and Analysis of a Wake
Steering Controller with Wind Direction Variability, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2019-35, in review, 2019. a
van Wingerden, J. W., Fleming, P. A., Göcmen, T., Eguinoa, I., Doekemeijer, B. M., Dykes, K., Lawson, M., Simley, E., King, J., Astrain, D., Iribas, M., Bottasso, C. L., Meyers, J., Raach, S., Kölle, K., and Giebel, G.: Expert Elicitation of Wind Farm Control, J. Phys.: Conf. Ser., 1618, 022025, https://doi.org/10.1088/1742-6596/1618/2/022025, 2020. a
Wagenaar, J. W., Machielse, L. A. H., and Schepers, J. G.: Controlling Wind in ECN's Scaled Wind Farm, in: Proceedings of EWEA 2012 – European Wind Energy Conference & Exhibition, European Wind Energy Association (EWEA),
16–19 April 2012, Copenhagen, Denmark, 2012. a
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
This article presents the results of a field experiment investigating wake steering on an...
Altmetrics
Final-revised paper
Preprint