Articles | Volume 6, issue 1
https://doi.org/10.5194/wes-6-159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Bart M. Doekemeijer
CORRESPONDING AUTHOR
Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
Stefan Kern
GE Renewable Energy, 85748 Garching, Germany
Sivateja Maturu
GE Renewable Energy, 85748 Garching, Germany
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Stoyan Kanev
TNO Energy Transition, Westerduinweg 3, 1755 LE Petten, the Netherlands
Bastian Salbert
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Johannes Schreiber
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Filippo Campagnolo
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Carlo L. Bottasso
Wind Energy Institute, Technische Universität München, 85748 Garching, Germany
Simone Schuler
GE Renewable Energy, 85748 Garching, Germany
Friedrich Wilts
UL International GmbH – DEWI, Ebertstrasse 96, 26382 Wilhelmshaven, Germany
Thomas Neumann
UL International GmbH – DEWI, Ebertstrasse 96, 26382 Wilhelmshaven, Germany
Giancarlo Potenza
Enel Green Power, Viale Regina Margherita 125, Rome, Italy
Fabio Calabretta
Enel Green Power, Viale Regina Margherita 125, Rome, Italy
Federico Fioretti
Enel Green Power, Viale Regina Margherita 125, Rome, Italy
Jan-Willem van Wingerden
Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
Related authors
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Short summary
The paper presents a new validation campaign of wake steering at a commercial wind farm. The campaign uses fixed yaw offset positions, rather than a table of optimal yaw offsets dependent on wind direction, to enable comparison with engineering models of wake steering. Additionally, by applying the same offset in beneficial and detrimental conditions, we are able to collect important data for assessing second-order wake model predictions.
Steffen Raach, Bart Doekemeijer, Sjoerd Boersma, Jan-Willem van Wingerden, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-54, https://doi.org/10.5194/wes-2019-54, 2019
Publication in WES not foreseen
Short summary
Short summary
The presented work combines two control approaches of wake redirection control, feedforward wake redirection and feedback wake redirction. In our previous investigatins the lidar-assisted feedback control was studied and the advantages and disadvantages were discussed. The optimal yaw angles for the wind turbines are precomputed, the feedback takes care of uncertainties and disturbances. The concept is demonstrated in a high fidelity simulation model.
Hector Mendez Reyes, Stoyan Kanev, Bart Doekemeijer, and Jan-Willem van Wingerden
Wind Energ. Sci., 4, 549–561, https://doi.org/10.5194/wes-4-549-2019, https://doi.org/10.5194/wes-4-549-2019, 2019
Short summary
Short summary
Within wind farms, the wind turbines interact with each other through their wakes. Turbines operating in these wakes have lower power production and increased wear and tear. Wake redirection is control strategy to steer the wakes aside from downstream turbines, increasing the power yield of the farm. Models for predicting the power gain and impacts on wear exist, but they are still immature and require validation. The validation of such a model is the purpose of this paper.
Andreas Rott, Bart Doekemeijer, Janna Kristina Seifert, Jan-Willem van Wingerden, and Martin Kühn
Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, https://doi.org/10.5194/wes-3-869-2018, 2018
Short summary
Short summary
Active wake deflection (AWD) aims to increase the power output of a wind farm by misaligning the yaw of upstream turbines. We analysed the effect of dynamic wind direction changes on AWD. The results show that AWD is very sensitive towards these dynamics. Therefore, we present a robust active wake control, which considers uncertainties and wind direction changes, increasing the overall power output of a wind farm. A side effect is a significant reduction of the yaw actuation of the turbines.
Bart M. Doekemeijer, Sjoerd Boersma, Lucy Y. Pao, Torben Knudsen, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 749–765, https://doi.org/10.5194/wes-3-749-2018, https://doi.org/10.5194/wes-3-749-2018, 2018
Short summary
Short summary
Most wind farm control algorithms in the literature rely on a simplified mathematical model that requires constant calibration to the current conditions. This paper provides such an estimation algorithm for a dynamic model capturing the turbine power production and flow field at hub height. Performance was demonstrated in high-fidelity simulations for two-turbine and nine-turbine farms, accurately estimating the ambient conditions and wind field inside the farms at a low computational cost.
Sjoerd Boersma, Bart Doekemeijer, Mehdi Vali, Johan Meyers, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, https://doi.org/10.5194/wes-3-75-2018, 2018
Short summary
Short summary
Controlling the flow within wind farms to reduce the fatigue loads and provide grid facilities such as the delivery of a demanded power is a challenging control problem due to the underlying time-varying non-linear wake dynamics. In this paper, a control-oriented dynamical wind farm model is presented and validated with high-fidelity wind farm models. In contrast to the latter models, the model presented in this work is computationally efficient and hence suitable for online wind farm control.
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149, https://doi.org/10.5194/wes-2024-149, 2025
Preprint under review for WES
Short summary
Short summary
This paper presents the findings of a study aimed at describing the flow system downstream of a wind turbine operated with a novel control technology. Results from heavy high-fidelity simulations are used to obtain a low-fidelity model that is quick enough to be used for the optimization of such technologies. Additionally, we were able to retrieve an improved understanding of the physics of such systems under different inflow conditions.
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-150, https://doi.org/10.5194/wes-2024-150, 2024
Preprint under review for WES
Short summary
Short summary
Established turbine wake models are steady-state. This paper presents an open-source dynamic wake modeling framework that compliments established steady-state wake models with dynamics. It is advantageous over steady-state wake models to describe wind farm power and energy over shorter periods. The model enables researchers to investigate the effectiveness of wind farm flow control strategies. This leads to a better utilization of wind farms and allows their use to the full extent.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024, https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary
Short summary
Wake steering can be integrated into wind farm layout optimization through a co-design approach. This study estimates the potential of this method for a wide range of realistic conditions, adopting a tailored genetic algorithm and novel geometric yaw relations. A gain in the annual energy yield between 0.3 % and 0.4 % is obtained for a 16-tubrine farm, and a multi-objective implementation is used to limit loss in the case that wake steering is not used during farm operation.
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci., 9, 1923–1940, https://doi.org/10.5194/wes-9-1923-2024, https://doi.org/10.5194/wes-9-1923-2024, 2024
Short summary
Short summary
An extended Kalman filter is used to estimate the wind impinging on a wind turbine based on the blade bending moments and a turbine model. Using large-eddy simulations, this paper verifies how robust the estimator is to the turbine control strategy as it impacts loads and operating parameters. It is shown that including dynamics in the turbine model to account for delays between actuation and bending moments is needed to maintain the accuracy of the estimator when dynamic pitch control is used.
Amr Hegazy, Peter Naaijen, Vincent Leroy, Félicien Bonnefoy, Mohammad Rasool Mojallizadeh, Yves Pérignon, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 1669–1688, https://doi.org/10.5194/wes-9-1669-2024, https://doi.org/10.5194/wes-9-1669-2024, 2024
Short summary
Short summary
Successful wave tank experiments were conducted to evaluate the feedforward (FF) control strategy benefits in terms of structural loads and power quality of floating wind turbine components. The wave FF control strategy is effective when it comes to alleviating the effects of the wave forces on the floating offshore wind turbines, whereas wave FF control requires a significant amount of actuation to minimize the platform pitch motion, which makes such technology unfavorable for that objective.
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1547–1575, https://doi.org/10.5194/wes-9-1547-2024, https://doi.org/10.5194/wes-9-1547-2024, 2024
Short summary
Short summary
We develop a new simple model to predict power losses incurred by a wind turbine when it yaws out of the wind. The model reveals the effects of a number of rotor design parameters and how the turbine is governed when it yaws. The model exhibits an excellent agreement with large eddy simulations and wind tunnel measurements. We showcase the capabilities of the model by deriving the power-optimal yaw strategy for a single turbine and for a cluster of wake-interacting turbines.
Unai Gutierrez Santiago, Aemilius van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-83, https://doi.org/10.5194/wes-2024-83, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Knowing the loads applied to wind turbine gearboxes throughout their service life is becoming increasingly important. Operational deflection shapes identified from fiber-optic strain measurements have enabled the estimation of the gearbox input torque. This allows for future improvements in assessing the remaining useful life. Additionally, tracking the operational deflection shapes over time could enhance condition monitoring in planetary gear stages.
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024, https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024, https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Short summary
The controller of a wind turbine has an important role in regulating power production and avoiding structural failure. However, it is often designed after the rest of the turbine, and thus its potential is not fully exploited. An alternative is to design the structure and the controller simultaneously. This work develops a method to identify if a given turbine design can benefit from this new simultaneous design process. For example, a higher and cheaper turbine tower can be built this way.
Franz V. Mühle, Florian M. Heckmeier, Filippo Campagnolo, and Christian Breitsamter
Wind Energ. Sci., 9, 1251–1271, https://doi.org/10.5194/wes-9-1251-2024, https://doi.org/10.5194/wes-9-1251-2024, 2024
Short summary
Short summary
Wind turbines influence each other, and these wake effects limit the power production of downstream turbines. Controlling turbines collectively and not individually can limit such effects. We experimentally investigate a control strategy increasing mixing in the wake. We want to see the potential of this so-called Helix control for power optimization and understand the flow physics. Our study shows that the control technique leads to clearly faster wake recovery and thus higher power production.
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024, https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Short summary
Wind turbine wakes negatively affect wind farm performance as they impinge on downstream rotors. Wake steering reduces these losses by redirecting wakes using yaw misalignment of the upstream rotor. We develop a novel control strategy based on model predictions to implement wake steering under time-varying conditions. The controller is tested in a high-fidelity simulation environment and improves wind farm power output compared to a state-of-the-art reference controller.
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024, https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Short summary
This research presents a multi-objective optimisation approach to balance vertical-axis wind turbine (VAWT) performance and noise, comparing the combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking controller with a baseline. Psychoacoustic annoyance is used as a novel metric for human perception of wind turbine noise. Results showcase the WSE–TSR tracking controller’s potential in trading off the considered objectives, thereby fostering the deployment of VAWTs in urban areas.
Maarten J. van den Broek, Delphine De Tavernier, Paul Hulsman, Daan van der Hoek, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1909–1925, https://doi.org/10.5194/wes-8-1909-2023, https://doi.org/10.5194/wes-8-1909-2023, 2023
Short summary
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Helena Canet, Adrien Guilloré, and Carlo L. Bottasso
Wind Energ. Sci., 8, 1029–1047, https://doi.org/10.5194/wes-8-1029-2023, https://doi.org/10.5194/wes-8-1029-2023, 2023
Short summary
Short summary
We propose a new approach to design that aims at optimal trade-offs between economic and environmental goals. New environmental metrics are defined, which quantify impacts in terms of CO2-equivalent emissions produced by the turbine over its entire life cycle. For some typical onshore installations in Germany, results indicate that a 1 % increase in the cost of energy can buy about a 5 % decrease in environmental impacts: a small loss for the individual can lead to larger gains for society.
Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 849–864, https://doi.org/10.5194/wes-8-849-2023, https://doi.org/10.5194/wes-8-849-2023, 2023
Short summary
Short summary
Wind turbines placed in farms interact with their wake, lowering the power production of the wind farm. This can be mitigated using so-called wake mixing techniques. This work investigates the coupling between the pulse wake mixing technique and the motion of floating wind turbines using the pulse. Frequency response experiments and time domain simulations show that extra movement is undesired and that the
optimalexcitation frequency is heavily platform dependent.
Robert Braunbehrens, Andreas Vad, and Carlo L. Bottasso
Wind Energ. Sci., 8, 691–723, https://doi.org/10.5194/wes-8-691-2023, https://doi.org/10.5194/wes-8-691-2023, 2023
Short summary
Short summary
The paper presents a new method in which wind turbines in a wind farm act as local sensors, in this way detecting the flow that develops within the power plant. Through this technique, we are able to identify effects on the flow generated by the plant itself and by the orography of the terrain. The new method not only delivers a flow model of much improved quality but can also help in understanding phenomena that drive the farm performance.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Emmanouil M. Nanos, Carlo L. Bottasso, Simone Tamaro, Dimitris I. Manolas, and Vasilis A. Riziotis
Wind Energ. Sci., 7, 1641–1660, https://doi.org/10.5194/wes-7-1641-2022, https://doi.org/10.5194/wes-7-1641-2022, 2022
Short summary
Short summary
A novel way of wind farm control is presented where the wake is deflected vertically to reduce interactions with downstream turbines. This is achieved by moving ballast in a floating offshore platform in order to pitch the support structure and thereby tilt the wind turbine rotor disk. The study considers the effects of this new form of wake control on the aerodynamics of the steering and wake-affected turbines, on the structure, and on the ballast motion system.
Stefan Loew and Carlo L. Bottasso
Wind Energ. Sci., 7, 1605–1625, https://doi.org/10.5194/wes-7-1605-2022, https://doi.org/10.5194/wes-7-1605-2022, 2022
Short summary
Short summary
This publication presents methods to improve the awareness and control of material fatigue for wind turbines. This is achieved by enhancing a sophisticated control algorithm which utilizes wind prediction information from a laser measurement device. The simulation results indicate that the novel algorithm significantly improves the economic performance of a wind turbine. This benefit is particularly high for situations when the prediction quality is low or the prediction time frame is short.
Daan van der Hoek, Joeri Frederik, Ming Huang, Fulvio Scarano, Carlos Simao Ferreira, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 1305–1320, https://doi.org/10.5194/wes-7-1305-2022, https://doi.org/10.5194/wes-7-1305-2022, 2022
Short summary
Short summary
The paper presents a wind tunnel experiment where dynamic induction control was implemented on a small-scale turbine. By periodically changing the pitch angle of the blades, the low-velocity turbine wake is perturbed, and hence it recovers at a faster rate. Small particles were released in the flow and subsequently recorded with a set of high-speed cameras. This allowed us to reconstruct the flow behind the turbine and investigate the effect of dynamic induction control on the wake.
Emmanouil M. Nanos, Carlo L. Bottasso, Filippo Campagnolo, Franz Mühle, Stefano Letizia, G. Valerio Iungo, and Mario A. Rotea
Wind Energ. Sci., 7, 1263–1287, https://doi.org/10.5194/wes-7-1263-2022, https://doi.org/10.5194/wes-7-1263-2022, 2022
Short summary
Short summary
The paper describes the design of a scaled wind turbine in detail, for studying wakes and wake control applications in the known, controllable and repeatable conditions of a wind tunnel. The scaled model is characterized by conducting experiments in two wind tunnels, in different conditions, using different measurement equipment. Results are also compared to predictions obtained with models of various fidelity. The analysis indicates that the model fully satisfies the initial requirements.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022, https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
Short summary
The objective of the paper is to develop a data-driven output-constrained individual pitch control approach, which will not only mitigate the blade loads but also reduce the pitch activities. This is achieved by only reducing the blade loads violating a user-defined bound, which leads to an economically viable load control strategy. The proposed control strategy shows promising results of load reduction in the wake-rotor overlapping and turbulent sheared wind conditions.
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022, https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
Short summary
The gearbox is one of the main contributors to the overall cost of wind energy, and it is acknowledged that we still do not fully understand its loading. The study presented in this paper develops a new alternative method to measure input rotor torque in wind turbine gearboxes, overcoming the drawbacks related to measuring on a rotating shaft. The method presented in this paper could make measuring gearbox torque more cost-effective, which would facilitate its adoption in serial wind turbines.
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022, https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
Short summary
The damping of an offshore wind turbine is a difficult physical quantity to predict, although it plays a major role in a cost-effective turbine design. This paper presents a review of all approaches that can be used for damping estimation directly from operational wind turbine data. As each use case is different, a novel suitability table is presented to enable the user to choose the most appropriate approach for the given availability and characteristics of measurement data.
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Short summary
The paper presents a new validation campaign of wake steering at a commercial wind farm. The campaign uses fixed yaw offset positions, rather than a table of optimal yaw offsets dependent on wind direction, to enable comparison with engineering models of wake steering. Additionally, by applying the same offset in beneficial and detrimental conditions, we are able to collect important data for assessing second-order wake model predictions.
Helena Canet, Stefan Loew, and Carlo L. Bottasso
Wind Energ. Sci., 6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021, https://doi.org/10.5194/wes-6-1325-2021, 2021
Short summary
Short summary
Lidar-assisted control (LAC) is used to redesign the rotor and tower of three turbines, differing in terms of wind class, size, and power rating. The load reductions enabled by LAC are used to save
mass, increase hub height, or extend lifetime. The first two strategies yield reductions in the cost of energy only for the tower of the largest machine, while more interesting benefits are obtained for lifetime extension.
Stoyan Kanev and Edwin Bot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-71, https://doi.org/10.5194/wes-2021-71, 2021
Publication in WES not foreseen
Short summary
Short summary
Active Wake Control (AWC) is a strategy for operating wind farms in a cooperative manner to maximize the overall power production. The state-of-the-art approach optimizes AWC for static wind conditions, which is sub-optimal in real-life due to the continuous variations of the wind resource and the very slow dynamics of the yaw system that controls the rotor direction. This work develops dynamic robust AWC that considers realistic operating conditions including variabilities and uncertainties.
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021, https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Short summary
This paper quantifies the fidelity of the wakes generated by a small (1 m diameter) scaled wind turbine model operated in a large boundary layer wind tunnel. A detailed scaling analysis accompanied by large-eddy simulations shows that these wakes are very realistic scaled versions of the ones generated by the parent full-scale wind turbine in the field.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Short summary
A previously published wind sensing method is applied to an experimental dataset obtained from a 3.5 MW turbine and a nearby hub-tall met mast. The method uses blade load harmonics to estimate rotor-equivalent shears and wind directions at the rotor disk. Results indicate the good quality of the estimated shear, both in terms of 10 min averages and of resolved time histories, and a reasonable accuracy in the estimation of the yaw misalignment.
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021, https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Short summary
The paper analyzes in detail the problem of scaling, considering both the steady-state and transient response cases, including the effects of aerodynamics, elasticity, inertia, gravity, and actuation. After a general theoretical analysis of the problem, the article considers two alternative ways of designing a scaled rotor. The two methods are then applied to the scaling of a 10 MW turbine of 180 m in diameter down to three different sizes (54, 27, and 2.8 m).
Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1537–1550, https://doi.org/10.5194/wes-5-1537-2020, https://doi.org/10.5194/wes-5-1537-2020, 2020
Short summary
Short summary
A new method is described to identify the aerodynamic characteristics of blade airfoils directly from operational data of the turbine. Improving on a previously published approach, the present method is based on a new maximum likelihood formulation that includes errors both in the outputs and the inputs. The method is demonstrated on the identification of the polars of small-scale turbines for wind tunnel testing.
Filippo Campagnolo, Robin Weber, Johannes Schreiber, and Carlo L. Bottasso
Wind Energ. Sci., 5, 1273–1295, https://doi.org/10.5194/wes-5-1273-2020, https://doi.org/10.5194/wes-5-1273-2020, 2020
Short summary
Short summary
The performance of an open-loop wake-steering controller is investigated with a new wind tunnel experiment. Three scaled wind turbines are placed on a large turntable and exposed to a turbulent inflow, resulting in dynamically varying wake interactions. The study highlights the importance of using a robust formulation and plant flow models of appropriate fidelity and the existence of possible margins for improvement by the use of dynamic controllers.
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020, https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Short summary
This paper validates a method to estimate the vertical wind shear and detect the presence and location of an impinging wake with field data. Shear and wake awareness have multiple uses, from turbine and farm control to monitoring and forecasting.
Results indicate a very good correlation between the estimated vertical shear and the one measured by a met mast and a remarkable ability to locate and track the motion of an impinging wake on an affected rotor.
Johannes Schreiber, Carlo L. Bottasso, Bastian Salbert, and Filippo Campagnolo
Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, https://doi.org/10.5194/wes-5-647-2020, 2020
Short summary
Short summary
The paper describes a new method that uses standard historical operational data and reconstructs the flow at the rotor disk of each turbine in a wind farm. The method is based on a baseline wind farm flow and wake model, augmented with error terms that are
learnedfrom operational data using an ad hoc system identification approach. Both wind tunnel experiments and real data from a wind farm at a complex terrain site are used to show the capabilities of the new method.
Astrid Lampert, Konrad Bärfuss, Andreas Platis, Simon Siedersleben, Bughsin Djath, Beatriz Cañadillas, Robert Hunger, Rudolf Hankers, Mark Bitter, Thomas Feuerle, Helmut Schulz, Thomas Rausch, Maik Angermann, Alexander Schwithal, Jens Bange, Johannes Schulz-Stellenfleth, Thomas Neumann, and Stefan Emeis
Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020, https://doi.org/10.5194/essd-12-935-2020, 2020
Short summary
Short summary
With the research aircraft Do-128 of TU Braunschweig, meteorological measurements were performed in the wakes of offshore wind parks during the project WIPAFF. During stable atmospheric conditions, the areas of reduced wind speed and enhanced turbulence behind wind parks had an extension larger than 45 km downwind. The data set consisting of 41 measurement flights is presented. Parameters include wind vector, temperature, humidity and significant wave height.
Joeri Alexis Frederik, Robin Weber, Stefano Cacciola, Filippo Campagnolo, Alessandro Croce, Carlo Bottasso, and Jan-Willem van Wingerden
Wind Energ. Sci., 5, 245–257, https://doi.org/10.5194/wes-5-245-2020, https://doi.org/10.5194/wes-5-245-2020, 2020
Short summary
Short summary
The interaction between wind turbines in a wind farm through their wakes is a widely studied research area. Until recently, research was focused on finding constant turbine inputs that optimize the performance of the wind farm. However, recent studies have shown that time-varying, dynamic inputs might be more beneficial. In this paper, the validity of this approach is further investigated by implementing it in scaled wind tunnel experiments and assessing load effects, showing promising results.
Johannes Schreiber, Amr Balbaa, and Carlo L. Bottasso
Wind Energ. Sci., 5, 237–244, https://doi.org/10.5194/wes-5-237-2020, https://doi.org/10.5194/wes-5-237-2020, 2020
Short summary
Short summary
An analytical wake model with a double-Gaussian velocity distribution is used to improve on a similar formulation by Keane et al (2016). The choice of a double-Gaussian shape function is motivated by the behavior of the near-wake region that is observed in numerical simulations and experimental measurements. The model is calibrated and validated using large eddy simulations replicating scaled wind turbine experiments, yielding improved results with respect to a classical single-Gaussian profile.
Simon K. Siedersleben, Andreas Platis, Julie K. Lundquist, Bughsin Djath, Astrid Lampert, Konrad Bärfuss, Beatriz Cañadillas, Johannes Schulz-Stellenfleth, Jens Bange, Tom Neumann, and Stefan Emeis
Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, https://doi.org/10.5194/gmd-13-249-2020, 2020
Short summary
Short summary
Wind farms affect local weather and microclimates. These effects can be simulated in weather models, usually by removing momentum at the location of the wind farm. Some debate exists whether additional turbulence should be added to capture the enhanced mixing of wind farms. By comparing simulations to measurements from airborne campaigns near offshore wind farms, we show that additional turbulence is necessary. Without added turbulence, the mixing is underestimated during stable conditions.
Steffen Raach, Bart Doekemeijer, Sjoerd Boersma, Jan-Willem van Wingerden, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-54, https://doi.org/10.5194/wes-2019-54, 2019
Publication in WES not foreseen
Short summary
Short summary
The presented work combines two control approaches of wake redirection control, feedforward wake redirection and feedback wake redirction. In our previous investigatins the lidar-assisted feedback control was studied and the advantages and disadvantages were discussed. The optimal yaw angles for the wind turbines are precomputed, the feedback takes care of uncertainties and disturbances. The concept is demonstrated in a high fidelity simulation model.
Hector Mendez Reyes, Stoyan Kanev, Bart Doekemeijer, and Jan-Willem van Wingerden
Wind Energ. Sci., 4, 549–561, https://doi.org/10.5194/wes-4-549-2019, https://doi.org/10.5194/wes-4-549-2019, 2019
Short summary
Short summary
Within wind farms, the wind turbines interact with each other through their wakes. Turbines operating in these wakes have lower power production and increased wear and tear. Wake redirection is control strategy to steer the wakes aside from downstream turbines, increasing the power yield of the farm. Models for predicting the power gain and impacts on wear exist, but they are still immature and require validation. The validation of such a model is the purpose of this paper.
Pietro Bortolotti, Helena Canet, Carlo L. Bottasso, and Jaikumar Loganathan
Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019, https://doi.org/10.5194/wes-4-397-2019, 2019
Short summary
Short summary
The paper studies the effects of uncertainties in aeroservoelastic
wind turbine models. Uncertainties are associated with the wind
inflow characteristics and the blade surface state, and they are propagated
by means of two non-intrusive methods throughout the
aeroservoelastic model of a large conceptual offshore wind
turbine. Results are compared with a brute-force extensive Monte
Carlo sampling to assess the convergence characteristics of the
non-intrusive approaches.
Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso
Wind Energ. Sci., 4, 115–125, https://doi.org/10.5194/wes-4-115-2019, https://doi.org/10.5194/wes-4-115-2019, 2019
Short summary
Short summary
The paper compares upwind and downwind three-bladed configurations
for a 10 MW wind turbine in terms of power and loads. For the
downwind case, the study also considers a load-aligned solution
with active coning. Results indicate that downwind solutions are
slightly more advantageous than upwind ones, although improvements
are small. Additionally, pre-alignment is difficult to achieve in
practice, and the active coning solution is associated with very
significant engineering challenges.
Jiangang Wang, Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 4, 71–88, https://doi.org/10.5194/wes-4-71-2019, https://doi.org/10.5194/wes-4-71-2019, 2019
Short summary
Short summary
This paper describes an LES approach for the simulation of wind
turbines and their wakes. The simulation model is used to
develop a complete digital copy of experiments performed with
scaled wind turbines in a boundary layer wind tunnel, including the
passive generation of a sheared turbulent flow. Numerical results
are compared with experimental measurements, with a good overall
matching between the two.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 4, 89–97, https://doi.org/10.5194/wes-4-89-2019, https://doi.org/10.5194/wes-4-89-2019, 2019
Short summary
Short summary
This paper describes a new formulation for estimating the wind
inflow at the rotor disk, based on measurements of the blade loads.
The new method improves on previous formulations by exploiting the
rotational symmetry of the problem. Experimental results obtained
with an aeroelastically scaled model in a boundary layer wind
tunnel are used for validating the proposed approach.
Andreas Rott, Bart Doekemeijer, Janna Kristina Seifert, Jan-Willem van Wingerden, and Martin Kühn
Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, https://doi.org/10.5194/wes-3-869-2018, 2018
Short summary
Short summary
Active wake deflection (AWD) aims to increase the power output of a wind farm by misaligning the yaw of upstream turbines. We analysed the effect of dynamic wind direction changes on AWD. The results show that AWD is very sensitive towards these dynamics. Therefore, we present a robust active wake control, which considers uncertainties and wind direction changes, increasing the overall power output of a wind farm. A side effect is a significant reduction of the yaw actuation of the turbines.
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 3, 791–803, https://doi.org/10.5194/wes-3-791-2018, https://doi.org/10.5194/wes-3-791-2018, 2018
Short summary
Short summary
This work presents a new fully automated method to correct for
pitch misalignment imbalances of wind turbine rotors. The method
has minimal requirements, as it only assumes the availability of a
sensor of sufficient accuracy and bandwidth to detect the 1P
harmonic to the desired precision and the ability to command the
pitch setting of each blade independently from the others.
Extensive numerical simulations are used to demonstrate the new
procedure.
Bart M. Doekemeijer, Sjoerd Boersma, Lucy Y. Pao, Torben Knudsen, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 749–765, https://doi.org/10.5194/wes-3-749-2018, https://doi.org/10.5194/wes-3-749-2018, 2018
Short summary
Short summary
Most wind farm control algorithms in the literature rely on a simplified mathematical model that requires constant calibration to the current conditions. This paper provides such an estimation algorithm for a dynamic model capturing the turbine power production and flow field at hub height. Performance was demonstrated in high-fidelity simulations for two-turbine and nine-turbine farms, accurately estimating the ambient conditions and wind field inside the farms at a low computational cost.
Sebastiaan Paul Mulders, Niels Frederik Boudewijn Diepeveen, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 615–638, https://doi.org/10.5194/wes-3-615-2018, https://doi.org/10.5194/wes-3-615-2018, 2018
Short summary
Short summary
The modeling, operating strategy, and controller design for an actual in-field wind turbine with a fixed-displacement hydraulic drivetrain are presented. An analysis is given on a passive torque control strategy for below-rated operation. The turbine lacks the option to influence the system torque by a generator, so the turbine is regulated by a spear valve in the region between below- and above-rated operation. The control design is evaluated on a real-world 500 kW hydraulic wind turbine.
Jiangang Wang, Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-47, https://doi.org/10.5194/wes-2018-47, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This paper describes a Scale Adaptive Simulation (SAS) approach for
the numerical simulation of wind turbines and their wakes. The SAS
formulation is found to be about one order of magnitude faster than
a classical LES approach. The simulation models are compared to
each other and with experimental measurements obtained with scaled
wind turbines in a boundary layer wind tunnel.
Sjoerd Boersma, Bart Doekemeijer, Mehdi Vali, Johan Meyers, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, https://doi.org/10.5194/wes-3-75-2018, 2018
Short summary
Short summary
Controlling the flow within wind farms to reduce the fatigue loads and provide grid facilities such as the delivery of a demanded power is a challenging control problem due to the underlying time-varying non-linear wake dynamics. In this paper, a control-oriented dynamical wind farm model is presented and validated with high-fidelity wind farm models. In contrast to the latter models, the model presented in this work is computationally efficient and hence suitable for online wind farm control.
Marta Bertelè, Carlo L. Bottasso, Stefano Cacciola, Fabiano Daher Adegas, and Sara Delport
Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017, https://doi.org/10.5194/wes-2-615-2017, 2017
Short summary
Short summary
The rotor of a wind turbine is used to determine some important parameters of the wind, including the direction of the wind vector relative to the rotor disk and horizontal and vertical shears. The method works by using measurements provided by existing onboard load sensors. The observed wind characteristics can be used to implement advanced features in smart wind turbine and wind farm controllers.
Marijn Floris van Dooren, Filippo Campagnolo, Mikael Sjöholm, Nikolas Angelou, Torben Mikkelsen, and Martin Kühn
Wind Energ. Sci., 2, 329–341, https://doi.org/10.5194/wes-2-329-2017, https://doi.org/10.5194/wes-2-329-2017, 2017
Short summary
Short summary
We conducted measurements in a wind tunnel with the remote sensing technique lidar to map the flow around a row of three model wind turbines. Two lidars were positioned near the wind tunnel walls to measure the two-dimensional wind vector over a defined scanning line or area without influencing the flow itself. A comparison of the lidar measurements with a hot-wire probe and a thorough uncertainty analysis confirmed the usefulness of lidar technology for such flow measurements in a wind tunnel.
Edwin van Solingen, Sebastiaan Paul Mulders, and Jan-Willem van Wingerden
Wind Energ. Sci., 2, 153–173, https://doi.org/10.5194/wes-2-153-2017, https://doi.org/10.5194/wes-2-153-2017, 2017
Short summary
Short summary
The aim of this paper is to show that with an automated tuning strategy, wind turbine control performance can be significantly increased. To this end, iterative feedback tuning (IFT) is applied to two different turbine controllers. The results obtained by high-fidelity simulations indicate significant performance improvements over baseline controllers. It is concluded that IFT of turbine controllers has the potential to become a valuable tool for improving wind turbine performance.
Carlo L. Bottasso, Alessandro Croce, Federico Gualdoni, Pierluigi Montinari, and Carlo E. D. Riboldi
Wind Energ. Sci., 1, 297–310, https://doi.org/10.5194/wes-1-297-2016, https://doi.org/10.5194/wes-1-297-2016, 2016
Short summary
Short summary
The paper discusses different concepts for reducing loads on wind turbines using movable blade tips. Passive and semi-passive tip solutions move freely in response to air load fluctuations, while in the active case an actuator drives the tip motion in response to load measurements. The various solutions are compared with a standard blade and with each other in terms of their ability to reduce both fatigue and extreme loads.
Sachin T. Navalkar, Lars O. Bernhammer, Jurij Sodja, Edwin van Solingen, Gijs A. M. van Kuik, and Jan-Willem van Wingerden
Wind Energ. Sci., 1, 205–220, https://doi.org/10.5194/wes-1-205-2016, https://doi.org/10.5194/wes-1-205-2016, 2016
Short summary
Short summary
In order to reduce the cost of wind energy, it is necessary to reduce the loads that wind turbines withstand over their lifetime. The combination of blade rotation with newly designed blade shape changing actuators is demonstrated experimentally. While load reduction is achieved, the additional flexibility implies that careful control design is needed to avoid instability.
Riccardo Riva, Stefano Cacciola, and Carlo Luigi Bottasso
Wind Energ. Sci., 1, 177–203, https://doi.org/10.5194/wes-1-177-2016, https://doi.org/10.5194/wes-1-177-2016, 2016
Short summary
Short summary
This paper presents a method to assess the stability of a wind turbine. The proposed approach uses the recorded time history of the system response and fits to it a periodic reduced-order model that can handle stochastic disturbances. Stability is computed by using Floquet theory on the reduced-order model. Since the method only uses response data, it is applicable to any simulation model as well as to experimental test data. The method is compared to the well-known operational modal analysis.
Pietro Bortolotti, Carlo L. Bottasso, and Alessandro Croce
Wind Energ. Sci., 1, 71–88, https://doi.org/10.5194/wes-1-71-2016, https://doi.org/10.5194/wes-1-71-2016, 2016
Short summary
Short summary
The paper presents a new method to conduct the holistic optimization of a wind turbine. The proposed approach allows one to define the rotor radius and tower height, while simultaneously performing the detailed sizing of rotor and tower. For the rotor, the procedures perform simultaneously the design both from the aerodynamic and structural points of view. The overall optimization seeks a minimum for the cost of energy, while accounting for a wide range of user-defined design constraints.
G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N. Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad, H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen, P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom, S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen, R. W. Künneke, P. E. Morthorst, and K. Skytte
Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, https://doi.org/10.5194/wes-1-1-2016, 2016
Related subject area
Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Large-eddy simulation of airborne wind energy farms
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Turbulence statistics from three different nacelle lidars
RANS modeling of a single wind turbine wake in the unstable surface layer
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Validation of wind resource and energy production simulations for small wind turbines in the United States
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
The five main influencing factors for lidar errors in complex terrain
Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations
Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions
Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow
Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study
On the measurement of stability parameter over complex mountainous terrain
Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler lidars
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
On turbulence models and lidar measurements for wind turbine control
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Recovery processes in a large offshore wind farm
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
WRF-simulated low-level jets over Iowa: characterization and sensitivity studies
Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Design and analysis of a wake model for spatially heterogeneous flow
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Evaluation of idealized large-eddy simulations performed with the Weather Research and Forecasting model using turbulence measurements from a 250 m meteorological mast
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Offshore wind farm global blockage measured with scanning lidar
Understanding and mitigating the impact of data gaps on offshore wind resource estimates
Investigating the loads and performance of a model horizontal axis wind turbine under reproducible IEC extreme operational conditions
Validation of the dynamic wake meandering model with respect to loads and power production
Method for airborne measurement of the spatial wind speed distribution above complex terrain
Axial induction controller field test at Sedini wind farm
Wake redirection at higher axial induction
An overview of wind-energy-production prediction bias, losses, and uncertainties
Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
Set-point optimization in wind farms to mitigate effects of flow blockage induced by atmospheric gravity waves
Computational analysis of high-lift-generating airfoils for diffuser-augmented wind turbines
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022, https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022, https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Short summary
In this work, we study parks of large-scale airborne wind energy systems using a virtual flight simulator. The virtual flight simulator combines numerical techniques from flow simulation and kite control. Using advanced control algorithms, the systems can operate efficiently in the park despite turbulent flow conditions. For the three configurations considered in the study, we observe significant wake effects, reducing the power yield of the parks.
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Short summary
This research involves studying the flow around the section of a wind turbine blade, albeit at a lower Reynolds number or flow speed, using wall-resolved large-eddy simulations, a form of computer simulation that resolves the important scales of the flow. Among the many interesting results, it is shown that the energy entering the boundary layer around the airfoil or section of the blade is proportional to the square of the incoming flow turbulence intensity.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022, https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Short summary
We described a new automated method to separate the wind turbine wake from the undisturbed flow. The method relies on the wind speed distribution in the measured wind field to select one specific threshold value and split the measurements into wake and background points. The purpose of the method is to reduce the amount of data required – the proposed algorithm does not need precise information on the wind speed or direction and can run on the image instead of the measured data.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022, https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Short summary
Wind turbine wakes are dependent on the atmospheric conditions, and it is therefore important to be able to simulate in various different atmospheric conditions. This paper concerns the specific case of an unstable atmospheric surface layer, which is the lower part of the typical daytime atmospheric boundary layer. A simple flow model is suggested and tested for a range of single-wake scenarios, and it shows promising results for velocity deficit predictions.
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022, https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary
Short summary
In the future there will be very large wind farm clusters in the German Bight. This study investigates how the wind field is affected by these very large wind farms and how much energy can be extracted by the wind turbines. Very large wind farms do not only reduce the wind speed but can also cause a change in wind direction or temperature. The extractable energy per wind turbine is much smaller for large wind farms than for small wind farms due to the reduced wind speed inside the wind farms.
Lindsay M. Sheridan, Caleb Phillips, Alice C. Orrell, Larry K. Berg, Heidi Tinnesand, Raj K. Rai, Sagi Zisman, Dmitry Duplyakin, and Julia E. Flaherty
Wind Energ. Sci., 7, 659–676, https://doi.org/10.5194/wes-7-659-2022, https://doi.org/10.5194/wes-7-659-2022, 2022
Short summary
Short summary
The small wind community relies on simplified wind models and energy production simulation tools to obtain energy generation expectations. We gathered actual wind speed and turbine production data across the US to test the accuracy of models and tools for small wind turbines. This study provides small wind installers and owners with the error metrics and sources of error associated with using models and tools to make performance estimates, empowering them to adjust expectations accordingly.
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022, https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Short summary
Lidar-assisted control of wind turbines requires a wind field generator capable of simulating wind evolution. Out of this need, we extend the Veers method for 3D wind field generation to 4D and propose a two-step Cholesky decomposition approach. Based on this, we develop a 4D wind field generator – evoTurb – coupled with TurbSim and Mann turbulence generator. We further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide practical suggestions.
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Tobias Klaas-Witt and Stefan Emeis
Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022, https://doi.org/10.5194/wes-7-413-2022, 2022
Short summary
Short summary
Light detection and ranging (lidar) has become a valuable technology to assess the wind resource at hub height of modern wind turbines. However, because of their measurement principle, common lidars suffer from errors at orographically complex, i.e. hilly or mountainous, sites. This study analyses the impact of the five main influencing factors in a non-dimensional, model-based parameter study.
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022, https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
Short summary
Wind turbine wake behavior in hilly terrain depends on various atmospheric conditions. We modeled a wind turbine located on top of a ridge in Portugal during typical nighttime and daytime atmospheric conditions and validated these model results with observational data. During nighttime conditions, the wake deflected downwards following the terrain. During daytime conditions, the wake deflected upwards. These results can provide insight into wind turbine siting and operation in hilly regions.
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Michael F. Howland, Aditya S. Ghate, Jesús Bas Quesada, Juan José Pena Martínez, Wei Zhong, Felipe Palou Larrañaga, Sanjiva K. Lele, and John O. Dabiri
Wind Energ. Sci., 7, 345–365, https://doi.org/10.5194/wes-7-345-2022, https://doi.org/10.5194/wes-7-345-2022, 2022
Short summary
Short summary
Wake steering control, in which turbines are intentionally misaligned with the incident wind, has demonstrated potential to increase wind farm energy. We investigate wake steering control methods in simulations of a wind farm operating in the terrestrial diurnal cycle. We develop a statistical wind direction forecast to improve wake steering in flows with time-varying states. Closed-loop wake steering control increases wind farm energy production, compared to baseline and open-loop control.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022, https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Elena Cantero, Javier Sanz, Fernando Borbón, Daniel Paredes, and Almudena García
Wind Energ. Sci., 7, 221–235, https://doi.org/10.5194/wes-7-221-2022, https://doi.org/10.5194/wes-7-221-2022, 2022
Short summary
Short summary
The impact of atmospheric stability on wind energy is widely demonstrated, so we have to know how to characterise it.
This work based on a meteorological mast located in a complex terrain compares and evaluates different instrument set-ups and methodologies for stability characterisation. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements and practical use in connection with wind energy applications.
Peter Brugger, Corey Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 7, 185–199, https://doi.org/10.5194/wes-7-185-2022, https://doi.org/10.5194/wes-7-185-2022, 2022
Short summary
Short summary
Wind turbines create a wake of reduced wind speeds downstream of the rotor. The wake does not necessarily have a straight, pencil-like shape but can meander similar to a smoke plume. We investigated this wake meandering and observed that the downstream transport velocity is slower than the wind speed contrary to previous assumptions and that the evolution of the atmospheric turbulence over time impacts wake meandering on distances typical for the turbine spacing in wind farms.
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021, https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
Short summary
We validate new high-resolution data set (NORA3) for offshore wind power purposes for the North Sea and the Norwegian Sea. The aim of the validation is to ensure that NORA3 can act as a wind resource data set in the planning phase for future offshore wind power installations in the area of concern. The general conclusion of the validation is that NORA3 is well suited for wind power estimates but gives slightly conservative estimates of the offshore wind metrics.
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021, https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021, https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
Short summary
This study investigates systematic, seasonal biases in the long-term correction of short-term wind measurements (< 1 year). Two popular measure–correlate–predict (MCP) methods yield remarkably different results. Six reanalysis data sets serve as long-term data. Besides experimental results, theoretical findings are presented which link the mechanics of the methods and the properties of the reanalysis data sets to the observations. Finally, recommendations for wind park planners are derived.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021, https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021, https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Short summary
We carry out a probabilistic calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution nacelle-based lidar measurements of the wake flow field. The experimental data were collected from the Scaled Wind Farm Technology (SWiFT) facility in Texas. The analysis includes the velocity deficit, wake-added turbulence, and wake meandering features under various inflow wind and atmospheric-stability conditions.
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021, https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Short summary
Wind turbines extract momentum from atmospheric flow and convert that to electricity. This study explores recovery processes in wind farms that replenish the momentum so that wind farms can continue to function. Experiments with a numerical model show that momentum transport by turbulent eddies from above the wind turbines is the major contributor to recovery except for strong wind conditions and low wind turbine density, where horizontal advection can also play a major role.
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Short summary
As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. We leverage a year of data of two floating lidars to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. We find that almost 100 independent long events occur throughout the year.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021, https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Short summary
Wind farms operate in the atmospheric boundary layer, and their performance is strongly dependent on the atmospheric conditions. We propose a simple model of the atmospheric boundary layer that can be used as an inflow model for wind farm simulations for isolating a number of atmospheric effects – namely, the change in wind direction with height and atmospheric boundary layer depth. In addition, the simple model is shown to be consistent with two similarity theories.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021, https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary
Short summary
We deal with wake redirection, which is a promising approach designed to mitigate turbine–wake interactions which have a negative impact on the performance and lifetime of wind farms. We show that substantial power gains can be obtained by tilting the rotors of spanwise-periodic wind-turbine arrays in the atmospheric boundary layer (ABL). Optimal relative rotor sizes and spanwise spacings exist, which maximize the global power extracted from the wind.
Alfredo Peña, Branko Kosović, and Jeffrey D. Mirocha
Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, https://doi.org/10.5194/wes-6-645-2021, 2021
Short summary
Short summary
We investigate the ability of a community-open weather model to simulate the turbulent atmosphere by comparison with measurements from a 250 m mast at a flat site in Denmark. We found that within three main atmospheric stability regimes, idealized simulations reproduce closely the characteristics of the observations with regards to the mean wind, direction, turbulent fluxes, and turbulence spectra. Our work provides foundation for the use of the weather model in multiscale real-time simulations.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Kamran Shirzadeh, Horia Hangan, Curran Crawford, and Pooyan Hashemi Tari
Wind Energ. Sci., 6, 477–489, https://doi.org/10.5194/wes-6-477-2021, https://doi.org/10.5194/wes-6-477-2021, 2021
Short summary
Short summary
Wind energy systems work coherently in atmospheric flows which are gusty. This causes highly variable power productions and high fatigue loads on the system, which together hold back further growth of the wind energy market. This study demonstrates an alternative experimental procedure to investigate some extreme wind condition effects on wind turbines based on the IEC standard. This experiment can be improved upon and used to develop new control concepts, mitigating the effect of gusts.
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021, https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary
Short summary
Wind farm sites in complex terrain are subject to local wind phenomena, which are difficult to quantify but have a huge impact on a wind turbine's annual energy production. Therefore, a wind sensor was applied on an unmanned aerial vehicle and validated against stationary wind sensors with good agreement. A measurement over complex terrain showed local deviations from the mean wind speed of approx. ± 30 %, indicating the importance of an extensive site evaluation to reduce investment risk.
Ervin Bossanyi and Renzo Ruisi
Wind Energ. Sci., 6, 389–408, https://doi.org/10.5194/wes-6-389-2021, https://doi.org/10.5194/wes-6-389-2021, 2021
Short summary
Short summary
This paper describes the design and field testing of a controller for reducing wake interactions on a wind farm. Reducing the power of some turbines weakens their wakes, allowing other turbines to produce more power so that the total wind farm power may increase. There have been doubts that this is feasible, but these field tests on a full-scale wind farm indicate that this goal has been achieved, also providing convincing validation of the model used for designing the controller.
Carlo Cossu
Wind Energ. Sci., 6, 377–388, https://doi.org/10.5194/wes-6-377-2021, https://doi.org/10.5194/wes-6-377-2021, 2021
Short summary
Short summary
In this study wake redirection and axial-induction control are combined to mitigate turbine–wake interactions, which have a negative impact on the performance and lifetime of wind farms. The results confirm that substantial power gains are obtained when overinduction is combined with tilt control. More importantly, the approach is extended to the case of yaw control, showing that large power gain enhancements are obtained by means of static overinductive yaw control.
Joseph C. Y. Lee and M. Jason Fields
Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021, https://doi.org/10.5194/wes-6-311-2021, 2021
Short summary
Short summary
This review paper evaluates the energy prediction bias in the wind resource assessment process, and the overprediction bias is decreasing over time. We examine the estimated and observed losses and uncertainties in energy production from the literature, according to the proposed framework in the International Electrotechnical Commission 61400-15 standard. The considerable uncertainties call for further improvements in the prediction methodologies and more observations for validation.
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 6, 295–309, https://doi.org/10.5194/wes-6-295-2021, https://doi.org/10.5194/wes-6-295-2021, 2021
Short summary
Short summary
Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting and is especially useful when combined with other forecasting techniques. This study utilizes a popular machine learning algorithm, random forest, in an attempt to predict the forecasting error of a statistical forecasting model. Various atmospheric characteristics are used as random forest inputs in an effort to discern the most useful atmospheric information for this purpose.
Luca Lanzilao and Johan Meyers
Wind Energ. Sci., 6, 247–271, https://doi.org/10.5194/wes-6-247-2021, https://doi.org/10.5194/wes-6-247-2021, 2021
Short summary
Short summary
This research paper investigates the potential of thrust set-point optimization in large wind farms for mitigating gravity-wave-induced blockage effects for the first time, with the aim of increasing the wind-farm energy extraction. The optimization tool is applied to almost 2000 different atmospheric states. Overall, power gains above 4 % are observed for 77 % of the cases.
Aniruddha Deepak Paranjape, Anhad Singh Bajaj, Shaheen Thimmaiah Palanganda, Radha Parikh, Raahil Nayak, and Jayakrishnan Radhakrishnan
Wind Energ. Sci., 6, 149–157, https://doi.org/10.5194/wes-6-149-2021, https://doi.org/10.5194/wes-6-149-2021, 2021
Short summary
Short summary
This project is a comparative study that takes into consideration various airfoils from the Selig, NACA, and Eppler families and models them as diffusers of the wind turbine. The efficiency of the diffuser-augmented wind turbine can be enhanced by optimizing the geometry of the diffuser shape. Their subsequent performance trends were then analyzed, and the lower-performing airfoils were systematically eliminated to leave us with an optimum design.
Cited articles
Adaramola, M. S. and Krogstad, P. A.: Experimental investigation of wake
effects on wind turbine performance, Renew. Energy, 36, 2078–2086,
https://doi.org/10.1016/j.renene.2011.01.024, 2011. a
Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines, Wind
Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018. a
Bastankhah, M. and Fernando, P. A.: Wind farm power optimization via yaw angle control: A wind tunnel study, J. Renew. Sustain. Energ., 11, 023301, https://doi.org/10.1063/1.5077038, 2019. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Boersma, S., Doekemeijer, B. M., Gebraad, P. M. O., Fleming, P. A., Annoni, J., Scholbrock, A., Frederik, J. A., and van Wingerden, J. W.: A tutorial on
control-oriented modeling and control of wind farms, in: American Control
Conference, Seattle, USA, 1–18, https://doi.org/10.23919/ACC.2017.7962923, 2017. a, b
Campagnolo, F., Petrović, V., Bottasso, C. L., and Croce, A.: Wind tunnel
testing of wake control strategies, in: Proceedings of the American Control
Conference (ACC), 6–8 July 2016, Boston, MA, USA, 513–518, https://doi.org/10.1109/ACC.2016.7524965, 2016a. a
Campagnolo, F., Petrović, V., Schreiber, J., Nanos, E. M., Croce, A., and
Bottasso, C. L.: Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization, J. Phys.: Conf. Ser., 753, 032006, https://doi.org/10.1088/1742-6596/753/3/032006, 2016b. a
Crespo, A. and Hernández, J.: Turbulence characteristics in wind-turbine
wakes, J. Wind Eng. Indust. Aerodynam., 61, 71–85,
https://doi.org/10.1016/0167-6105(95)00033-X, 1996. a
Damiani, R., Dana, S., Annoni, J., Fleming, P., Roadman, J., van Dam, J., and
Dykes, K.: Assessment of wind turbine component loads under yaw-offset
conditions, Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018, 2018. a
Doekemeijer, B. M., Fleming, P. A., and van Wingerden, J. W.: A tutorial on the synthesis and validation of a closed-loop wind farm controller using a
steady-state surrogate model, in: American Control Conference, Philadelphia,
USA, https://doi.org/10.23919/ACC.2019.8815126, 2019. a, b
Doekemeijer, B. M., van der Hoek, D. C., and van Wingerden, J. W.: Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions, Renewable Energy, 156, 719–730,
https://doi.org/10.1016/j.renene.2020.04.007, 2020. a
Doekemeijer, B. M., Storm, R., and Schreiber, J.: TUDelft-DataDrivenControl/FLORISSE_M: Stable version from 2018–2019, Zenodo, https://doi.org/10.5281/zenodo.4458669, 2021. a, b
Efron, B. and Tibshirani, R. J.: An introduction to the bootstrap, Chapman & Hall, New York, NY, USA, 1993. a
Ennis, B. L., White, J. R., and Paquette, J. A.: Wind turbine blade load
characterization under yaw offset at the SWiFT facility, J. Phys.: Conf. Ser., 1037, 052001, https://doi.org/10.1088/1742-6596/1037/5/052001, 2018. a
European Commission: Horizon 2020 Project Repository: Closed Loop Wind Farm
Control, available at: https://cordis.europa.eu/project/id/727477, last access: 20 October 2020. a
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020. a, b
Fleming, P. A., Scholbrock, A. K., Jehu, A., Davoust, S., Osler, E., Wright,
A. D., and Clifton, A.: Field-test results using a nacelle-mounted lidar for
improving wind turbine power capture by reducing yaw misalignment, J. Phys.: Conf. Ser., 524, 012002, https://doi.org/10.1088/1742-6596/524/1/012002, 2014. a, b
Fleming, P. A., Annoni, J., Scholbrock, A. K., Quon, E., Dana, S., Schreck, S., Raach, S., Haizmann, F., and Schlipf, D.: Full-scale field test of wake
steering, J. Phys.: Conf. Ser., 854, 012013, https://doi.org/10.1088/1742-6596/854/1/012013, 2017a. a
Fleming, P. A., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z.,
Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of wake steering
at an offshore wind farm, Wind Energ. Sci., 2, 229–239,
https://doi.org/10.5194/wes-2-229-2017, 2017b. a, b
Fleming, P. A., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A. K., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C. J., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake
steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4,
273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a, b, c
Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A.,
Ruben, S. D., Marden, J. R., and Pao, L. Y.: Wind plant power optimization
through yaw control using a parametric model for wake effects – a CFD
simulation study, Wind Energy, 19, 95–114, https://doi.org/10.1002/we.1822, 2016. a, b
Howland, M. F., Lele, S. K., and Dabiri, J. O.: Wind farm power optimization
through wake steering, P. Natl. Acad. Sci. USA, 116, 14495–14500, https://doi.org/10.1073/pnas.1903680116, 2019. a, b
Howland, M. F., Gonzalez, C. M., Martinez, J. J. P., Quesada, J. B., Larranaga, F. P., Yadav, N. K., Chawla, J. S., and Dabiri, J. O.: Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment, J. Renew. Sustain. Energ., 12, 063307, https://doi.org/10.1063/5.0023746, 2020. a, b, c
Kanev, S.: Dynamic wake steering and its impact on wind farm power production
and yaw actuator duty, Renew. Energy, 146, 9–15, https://doi.org/10.1016/j.renene.2019.06.122, 2020. a, b, c, d
Kanev, S. K., Savenije, F. J., and Engels, W. P.: Active wake control: An
approach to optimize the lifetime operation of wind farms, Wind Energy, 21,
488–501, https://doi.org/10.1002/we.2173, 2018. a
Katic, I., Højstrup, J., and Jensen, N.: A Simple Model for Cluster
Efficiency, A Raguzzi, in: European Wind Energy Association Conference and Exhibition 1986, 6–8 October 1986, Rome, Italy, 407–410, 1987. a
Kern, S., Schuler, S., Zettl, M., Busboom, A., Gomez, M., Wilts, F., Neumann, T., and Potenza, G.: CL-Windcon D3.2: Definition of field-testing conditions, CL-Windcon deliverable repository, European Horizon 2020 project, Report no. Ares(2017)5332644, CL-Windcon, Brussels, Belgium, 2017. a
Kheirabadi, A. C. and Nagamune, R.: A quantitative review of wind farm control with the objective of wind farm power maximization, J. Wind Eng. Indust. Aerodynam., 192, 45–73, https://doi.org/10.1016/j.jweia.2019.06.015, 2019. a
Kragh, K. A. and Hansen, M. H.: Load alleviation of wind turbines by yaw
misalignment, Wind Energy, 17, 971–982, https://doi.org/10.1002/we.1612, 2014. a
Kragh, K. A. and Hansen, M. H.: Potential of power gain with improved yaw
alignment, Wind Energy, 18, 979–989, https://doi.org/10.1002/we.1739, 2015. a, b
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a
Mudafort, R. M., Bachant, P., Fleming, K., Hammond, R., Bensason, D., Seim, K. S., Sortland, S., and Martinez, T.: NREL/floris: Updates to GCH V∕W velocities and cut planes, Zenodo, https://doi.org/10.5281/zenodo.4437566, 2021. a
Park, J., Kwon, S. D., and Law, K. H.: A data-driven approach for cooperative
wind farm control, in: 2016 American Control Conference, 6–8 July 2016, Boston, MA, USA, 525–530, https://doi.org/10.1109/ACC.2016.7524967, 2016. a
Rott, A., Doekemeijer, B., Seifert, J. K., van Wingerden, J.-W., and Kühn, M.: Robust active wake control in consideration of wind direction variability and uncertainty, Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, 2018. a, b
Scholbrock, A. K., Fleming, P. A., Wright, A., Slinger, C., Medley, J., and
Harris, M.: Field test results from lidar measured yaw control for improved
power capture with the NREL Controls Advanced Research Turbine, in: 33rd AIAA SciTech Wind Energy Symposium, 5–9 January 2015, Kissimmee, FL, USA, https://doi.org/10.2514/6.2015-1209, 2015. a, b
Schottler, J., Hölling, A., Peinke, J., and Hölling, M.: Wind tunnel tests on controllable model wind turbines in yaw, in: 34th AIAA SciTech Wind Energy Symposium, 4–8 January 2016, San Diego, CA, USA, https://doi.org/10.2514/6.2016-1523, 2016. a
Schreiber, J., Bottasso, C. L., Salbert, B., and Campagnolo, F.: Improving wind farm flow models by learning from operational data, Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, 2020. a
Simley, E., Fleming, P. A., and King, J.: Design and Analysis of a Wake
Steering Controller with Wind Direction Variability, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2019-35, in review, 2019. a
van Wingerden, J. W., Fleming, P. A., Göcmen, T., Eguinoa, I., Doekemeijer, B. M., Dykes, K., Lawson, M., Simley, E., King, J., Astrain, D., Iribas, M., Bottasso, C. L., Meyers, J., Raach, S., Kölle, K., and Giebel, G.: Expert Elicitation of Wind Farm Control, J. Phys.: Conf. Ser., 1618, 022025, https://doi.org/10.1088/1742-6596/1618/2/022025, 2020. a
Wagenaar, J. W., Machielse, L. A. H., and Schepers, J. G.: Controlling Wind in ECN's Scaled Wind Farm, in: Proceedings of EWEA 2012 – European Wind Energy Conference & Exhibition, European Wind Energy Association (EWEA),
16–19 April 2012, Copenhagen, Denmark, 2012. a
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
This article presents the results of a field experiment investigating wake steering on an...
Altmetrics
Final-revised paper
Preprint