Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A computationally efficient engineering aerodynamic model for swept wind turbine blades
Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399,4000 Roskilde, Denmark
Georg Raimund Pirrung
Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399,4000 Roskilde, Denmark
Mac Gaunaa
Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399,4000 Roskilde, Denmark
Helge Aagaard Madsen
Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399,4000 Roskilde, Denmark
Sergio González Horcas
Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399,4000 Roskilde, Denmark
Related authors
Ang Li, Mac Gaunaa, and Georg Raimund Pirrung
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-109, https://doi.org/10.5194/wes-2025-109, 2025
Preprint under review for WES
Short summary
Short summary
Wind turbines with swept blades have the potential to improve power production and reduce loads, but their actual benefits are uncertain and they are difficult to analyze. We developed a simplified yet accurate aerodynamic model, coupling two engineering models, to predict their performance. Tests against high-fidelity simulations show that the method offers reliable results with low computational effort, making it ideal for load calculations and design optimization of swept blades.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Kenneth Lønbæk
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-30, https://doi.org/10.5194/wes-2025-30, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study improves the analysis of curved wind turbine blades, such as those with sweep or prebend. Existing methods often blend different effects on blade performance, making design optimization challenging. We developed a framework that disentangles these effects, providing clearer insights. Our findings show that the aerodynamic influences of sweep and prebend can be modeled separately and combined, simplifying modeling processes and supporting more efficient blade design.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022, https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
Short summary
An aeroelastically optimized curved wind turbine blade tip is designed, manufactured, and tested on a novel outdoor rotating rig facility at the Risø campus of the Technical University of Denmark. Detailed aerodynamic measurements for various atmospheric conditions and results are compared to a series of in-house aeroelastic tools with a range of fidelities in aerodynamic modeling. The comparison highlights details in the ability of the codes to predict the performance of such a curved tip.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022, https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
Short summary
A consistent method of using two-dimensional airfoil data when using generalized lifting-line methods for the aerodynamic load calculation of non-planar horizontal-axis wind turbines is described. The important conclusions from the unsteady two-dimensional airfoil aerodynamics are highlighted. The impact of using a simplified approach instead of using the full model on the prediction of the aerodynamic performance of non-planar rotors is shown numerically for different aerodynamic models.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 75–104, https://doi.org/10.5194/wes-7-75-2022, https://doi.org/10.5194/wes-7-75-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for non-planar horizontal-axis wind turbines is proposed. The performance of the model is comparable with high-fidelity models but has similarly low computational cost as currently used low-fidelity models, which do not have the capability to model non-planar rotors. The developed model could be used for an efficient and accurate load calculation of non-planar wind turbines and eventually be integrated in a design optimization framework.
Filippo Trevisi, Gianni Cassoni, Mac Gaunaa, and Lorenzo Mario Fagiano
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-134, https://doi.org/10.5194/wes-2025-134, 2025
Preprint under review for WES
Short summary
Short summary
This paper investigates the optimal aerodynamic design of the wing and of the onboard turbines of the aircraft of fly-gen Airborne Wind Energy Systems, named windplane here, with a novel comprehensive engineering aerodynamic model and with the vortex particle method implemented in DUST. Placing the turbines at the wing tips, rotating them inboard down with low tip speed ratio and using conventional efficient airfoils for the wing is found to be optimal for windplanes.
Clemens Paul Zengler, Niels Troldborg, and Mac Gaunaa
Wind Energ. Sci., 10, 1485–1497, https://doi.org/10.5194/wes-10-1485-2025, https://doi.org/10.5194/wes-10-1485-2025, 2025
Short summary
Short summary
Wind turbine power performance is mostly calculated based on the wind speed measured at the turbine position. The presented results imply that it is necessary to also assess how the undisturbed wind speed changes in the flow direction to accurately predict the power performance. In other words, the acceleration of the flow is relevant for the energy production. An outcome of this work is a simple model that can be used to include flow acceleration in power performance predictions.
Nanako Sasanuma, Akihiro Honda, Christian Bak, Niels Troldborg, Mac Gaunaa, Morten Nielsen, and Teruhisa Shimada
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-130, https://doi.org/10.5194/wes-2025-130, 2025
Preprint under review for WES
Short summary
Short summary
We verify wake effects between two turbines in complex terrain using Supervisory Control and Data Acquisition data. By identifying “wake conditions” and “no-wake conditions” by the blade pitch angle of the upstream wind turbine, we evaluate wake effects on wind speed, turbulent intensity, and power output. Results show that flow downhill has a significant impact on wake effects compared to flow uphill. The method offers a practical alternative to field measurements in complex terrain.
Ang Li, Mac Gaunaa, and Georg Raimund Pirrung
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-109, https://doi.org/10.5194/wes-2025-109, 2025
Preprint under review for WES
Short summary
Short summary
Wind turbines with swept blades have the potential to improve power production and reduce loads, but their actual benefits are uncertain and they are difficult to analyze. We developed a simplified yet accurate aerodynamic model, coupling two engineering models, to predict their performance. Tests against high-fidelity simulations show that the method offers reliable results with low computational effort, making it ideal for load calculations and design optimization of swept blades.
Jelle Agatho Wilhelm Poland, Johannes Marinus van Spronsen, Mac Gaunaa, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-77, https://doi.org/10.5194/wes-2025-77, 2025
Revised manuscript under review for WES
Short summary
Short summary
We tested a small model of an energy-generating kite in a wind tunnel to study its aerodynamic behavior. By comparing measurements to computer simulations, we validated the models and identified where they match the real performance and where they fall short. These insights will guide more accurate aerodynamic modeling and inform design choices for kites used in airborne wind energy systems.
Helge Aagaard Madsen, Alejandro Gomez Gonzalez, Thanasis Barlas, Anders Smærup Olsen, Sigurd Brabæk Ildvedsen, and Andreas Fischer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-75, https://doi.org/10.5194/wes-2025-75, 2025
Revised manuscript under review for WES
Short summary
Short summary
In this article we present the measurements of local aerodynamic sectional characteristics on a full-scale rotor blade with a novel add-on instrumentation comprising a wake rake, a pressure belt, and a five hole Pitot tube. In general, the demonstration of this instrumentation opens a range of promising new options for optimizing airfoil sectional performance in its real operating environment, e.g. the size and position of VG's.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Kenneth Lønbæk
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-30, https://doi.org/10.5194/wes-2025-30, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study improves the analysis of curved wind turbine blades, such as those with sweep or prebend. Existing methods often blend different effects on blade performance, making design optimization challenging. We developed a framework that disentangles these effects, providing clearer insights. Our findings show that the aerodynamic influences of sweep and prebend can be modeled separately and combined, simplifying modeling processes and supporting more efficient blade design.
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024, https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary
Short summary
Movable surfaces on wind turbine (WT) blades, called active flaps, can reduce the cost of wind energy. However, they still need extensive testing. This study shows that the computer model used to design a WT with flaps aligns well with measurements obtained from a 3month test on a commercial WT featuring a prototype flap. Particularly during flap actuation, there were minimal differences between simulated and measured data. These findings assure the reliability of WT designs incorporating flaps.
Helge Aagaard Madsen
Wind Energ. Sci., 8, 1853–1872, https://doi.org/10.5194/wes-8-1853-2023, https://doi.org/10.5194/wes-8-1853-2023, 2023
Short summary
Short summary
We present a linear analytical solution for a two-dimensional (2-D) actuator disc (AD) for a plane disc, a yawed disc and a coned disc. Comparisons of the 2-D model with three-dimensional computational fluid dynamics (CFD) AD simulations for a circular yawed disc and with an axis-symmetric CFD simulation of a coned disc show good correlation for the normal velocity component of the disc. This indicates that the 2-D AD model could form the basis for a consistent, simple new rotor induction model.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Christian Grinderslev, Felix Houtin-Mongrolle, Niels Nørmark Sørensen, Georg Raimund Pirrung, Pim Jacobs, Aqeel Ahmed, and Bastien Duboc
Wind Energ. Sci., 8, 1625–1638, https://doi.org/10.5194/wes-8-1625-2023, https://doi.org/10.5194/wes-8-1625-2023, 2023
Short summary
Short summary
In standstill conditions wind turbines are at risk of vortex-induced vibrations (VIVs). VIVs can become large and lead to significant fatigue of the wind turbine structure over time. Thus it is important to have tools that can accurately compute this complex phenomenon. This paper studies the sensitivities to the chosen models of computational fluid dynamics (CFD) simulations when modelling VIVs and finds that much care is needed when setting up simulations, especially for specific flow angles.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023, https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Short summary
We present an analytical vortex model. Despite its simplicity, the model is fully consistent with 1D momentum theory. It shows that the flow through a non-uniformly loaded rotor operating in non-uniform inflow behaves locally as predicted by 1D momentum theory. As a consequence, the local power coefficient (based on local inflow) of an ideal rotor is unaltered by the presence of shear. Finally, the model shows that there is no cross-shear deflection of the wake of a rotor in sheared inflow.
Brandon Arthur Lobo, Özge Sinem Özçakmak, Helge Aagaard Madsen, Alois Peter Schaffarczyk, Michael Breuer, and Niels N. Sørensen
Wind Energ. Sci., 8, 303–326, https://doi.org/10.5194/wes-8-303-2023, https://doi.org/10.5194/wes-8-303-2023, 2023
Short summary
Short summary
Results from the DAN-AERO and aerodynamic glove projects provide significant findings. The effects of inflow turbulence on transition and wind turbine blades are compared to computational fluid dynamic simulations. It is found that the transition scenario changes even over a single revolution. The importance of a suitable choice of amplification factor is evident from the simulations. An agreement between the power spectral density plots from the experiment and large-eddy simulations is seen.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Christian Grinderslev, Niels Nørmark Sørensen, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 2201–2213, https://doi.org/10.5194/wes-7-2201-2022, https://doi.org/10.5194/wes-7-2201-2022, 2022
Short summary
Short summary
As wind turbines increase in size, the risk of flow-induced instabilities increases. This study investigates the phenomenon of vortex-induced vibrations (VIVs) on a large 10 MW wind turbine blade using two high-fidelity methods. It is found that VIVs can occur with multiple equilibrium states for the same flow case, showing an dependence on the initial conditions. This means that a blade which is stable in a flow can become unstable if, e.g., a turbine operation provokes an initial vibration.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022, https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
Short summary
An aeroelastically optimized curved wind turbine blade tip is designed, manufactured, and tested on a novel outdoor rotating rig facility at the Risø campus of the Technical University of Denmark. Detailed aerodynamic measurements for various atmospheric conditions and results are compared to a series of in-house aeroelastic tools with a range of fidelities in aerodynamic modeling. The comparison highlights details in the ability of the codes to predict the performance of such a curved tip.
Mads H. Aa. Madsen, Frederik Zahle, Sergio González Horcas, Thanasis K. Barlas, and Niels N. Sørensen
Wind Energ. Sci., 7, 1471–1501, https://doi.org/10.5194/wes-7-1471-2022, https://doi.org/10.5194/wes-7-1471-2022, 2022
Short summary
Short summary
This work presents a shape optimization framework based on computational fluid dynamics. The design framework is used to optimize wind turbine blade tips for maximum power increase while avoiding that extra loading is incurred. The final results are shown to align well with related literature. The resulting tip shape could be mounted on already installed wind turbines as a sleeve-like solution or be conceived as part of a modular blade with tips designed for site-specific conditions.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022, https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
Short summary
A consistent method of using two-dimensional airfoil data when using generalized lifting-line methods for the aerodynamic load calculation of non-planar horizontal-axis wind turbines is described. The important conclusions from the unsteady two-dimensional airfoil aerodynamics are highlighted. The impact of using a simplified approach instead of using the full model on the prediction of the aerodynamic performance of non-planar rotors is shown numerically for different aerodynamic models.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 75–104, https://doi.org/10.5194/wes-7-75-2022, https://doi.org/10.5194/wes-7-75-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for non-planar horizontal-axis wind turbines is proposed. The performance of the model is comparable with high-fidelity models but has similarly low computational cost as currently used low-fidelity models, which do not have the capability to model non-planar rotors. The developed model could be used for an efficient and accurate load calculation of non-planar wind turbines and eventually be integrated in a design optimization framework.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021, https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Short summary
Curved blade tips can potentially have a significant impact on wind turbine performance and loads. A swept tip shape optimized for wind turbine applications is tested in a wind tunnel. A range of numerical aerodynamic simulation tools with various levels of fidelity are compared. We show that all numerical tools except for the simplest blade element momentum based are in good agreement with the measurements, suggesting the required level of model fidelity necessary for the design of such tips.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Thanasis Barlas, Néstor Ramos-García, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 6, 491–504, https://doi.org/10.5194/wes-6-491-2021, https://doi.org/10.5194/wes-6-491-2021, 2021
Short summary
Short summary
A method to design advanced tip extensions for modern wind turbine blades is presented in this work. The resulting design concept has high potential in terms of actual implementation in a real rotor upscaling with a potential business case in reducing the cost of energy produced by future large wind turbine rotors.
Alejandro Gomez Gonzalez, Peder B. Enevoldsen, Athanasios Barlas, and Helge A. Madsen
Wind Energ. Sci., 6, 33–43, https://doi.org/10.5194/wes-6-33-2021, https://doi.org/10.5194/wes-6-33-2021, 2021
Short summary
Short summary
This work describes a series of tests of active flaps on a 4 MW wind turbine. The measurements were performed between October 2017 and June 2019 using two different active flap configurations on a blade of the turbine, showing a potential to manipulate the loading of the turbine between 5 % and 10 %. This project is performed with the aim of demonstrating a technology with the potential of reducing the levelized cost of energy for wind power.
Özge Sinem Özçakmak, Helge Aagaard Madsen, Niels Nørmark Sørensen, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1487–1505, https://doi.org/10.5194/wes-5-1487-2020, https://doi.org/10.5194/wes-5-1487-2020, 2020
Short summary
Short summary
Accurate prediction of the laminar-turbulent transition process is critical for design and prediction tools to be used in the industrial design process, particularly for the high Reynolds numbers experienced by modern wind turbines. Laminar-turbulent transition behavior of a wind turbine blade section is investigated in this study by means of field experiments and 3-D computational fluid dynamics (CFD) rotor simulations.
Cited articles
Barlas, T., Ramos-García, N., Pirrung, G. R., and González Horcas, S.: Surrogate-based aeroelastic design optimization of tip extensions on a modern 10 MW wind turbine, Wind Energ. Sci., 6, 491–504, https://doi.org/10.5194/wes-6-491-2021, 2021. a, b
Boorsma, K., Greco, L., and Bedon, G.: Rotor wake engineering models for
aeroelastic applications, J. Phys. Conf. Ser., 1037,
062013, https://doi.org/10.1088/1742-6596/1037/6/062013, 2018. a
Boorsma, K., Wenz, F., Lindenburg, K., Aman, M., and Kloosterman, M.: Validation and accommodation of vortex wake codes for wind turbine design load calculations, Wind Energ. Sci., 5, 699–719, https://doi.org/10.5194/wes-5-699-2020, 2020. a
Bortolotti, P., Tarrés, H. C., Dykes, K., Merz, K., Sethuraman, L.,
Verelst, D., and Zahle, F.: Systems Engineering in Wind Energy – WP2.1
Reference Wind Turbines, Tech. rep., National Renewable Energy Laboratory
(NREL),
available at: https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy-wp2-reference-wind-turbines (last access: 2 April 2021),
2019. a, b
Branlard, E. and Gaunaa, M.: Superposition of vortex cylinders for steady and
unsteady simulation of rotors of finite tip-speed ratio, Wind Energy, 19,
1307–1323, https://doi.org/10.1002/we.1899, 2015. a
Branlard, E. S. P.: Wind Turbine Aerodynamics and Vorticity-Based Methods,
Springer, Cham, 632 pp., https://doi.org/10.1007/978-3-319-55164-7, ISBN 978-3-319-55163-0, 2017. a
Bulirsch, R.: Numerical calculation of elliptic integrals and elliptic
functions, Numerische Mathematik, 7, 78–90, https://doi.org/10.1007/bf01397975, 1965. a
Fukushima, T.: Precise and fast computation of a general incomplete elliptic
integral of third kind by half and double argument transformations,
J. Comput. Appl. Math., 236, 1961–1975,
https://doi.org/10.1016/j.cam.2011.11.007, 2012. a
Hansen, M., Thomsen, K., Natarajan, A., and Barlas, A.: Design Load Basis for
onshore turbines – Revision 00, no. 0074(EN), in: DTU Wind Energy E, DTU Wind
Energy, Denmark, 2015. a
Larsen, T. and Hansen, A.: How 2 HAWC2, the user's manual, no. 1597(ver.
3-1)(EN) in Denmark, Forskningscenter Risoe, Risoe-R, Risø National
Laboratory, Roskilde, Denmark, 2007. a
Larwood, S., van Dam, C., and Schow, D.: Design studies of swept wind turbine
blades, Renew. Energ., 71, 563–571,
https://doi.org/10.1016/j.renene.2014.05.050, 2014. a
Larwood, S. M. and Zutek, M.: Swept wind turbine blade aeroelastic modeling for
loads and dynamic behavior, in: WINDPOWER 2006 Conference in Pittsburgh, USA, 4 to 7 June 2006. a
Li, A., Pirrung, G. R., Gaunaa, M., Madsen, H. A., and Horcas, S. G.: The
influence coefficients used in Wind Energy Science paper “A computationally
efficient engineering aerodynamic model for swept wind turbine blades”, Zenodo [data set],
https://doi.org/10.5281/zenodo.5235678, 2021. a, b, c
Liebst, B. S.: Wind turbine gust load alleviation utilizing curved blades,
J. Propul. Power, 2, 371–377, 1986. a
Madsen, H. Aa. and Rasmussen, F.: The influence on energy conversion and induction
from large blade deflections, Wind energy for the next millennium,
Proceedings, edited by: Petersen, E. L., Hjuler Jensen, P., Rave, K., Helm, P., and Ehmann, H., 138–141, James and James Science Publishers, ISBN 1-902916-00-X, 1999 European Wind Energy Conference and Exhibition, Nice, France, 1–5 March 1999. a
Madsen, H. Aa. and Rasmussen, F.: A near wake model for trailing vorticity compared
with the blade element momentum theory, Wind Energy, 7, 325–341,
https://doi.org/10.1002/we.131, 2004. a, b, c
Manolas, D. I., Serafeim, G. P., Chaviaropoulos, P. K., Riziotis, V. A., and
Voutsinas, S. G.: Assessment of load reduction capabilities using passive and
active control methods on a 10 MW-scale wind turbine, J. Phys. Conf. Ser., 1037, 032042, https://doi.org/10.1088/1742-6596/1037/3/032042,
2018. a
Marten, D.: QBlade: a modern tool for the aeroelastic simulation of wind
turbines, Doctoral thesis, Technische Universität Berlin, Berlin,
https://doi.org/10.14279/depositonce-10646, 2020. a
Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering
applications, AIAA Journal, 32, 1598–1605, 1994. a
Michelsen, J. A.: Basis3D—a platform for development of multiblock PDE
solvers, Tech. Rep. AFM 92-05, Technical University of Denmark, Lyngby, 1992. a
Michelsen, J. A.: Block structured multigrid solution of 2D and 3D elliptic
PDEs, Tech. Rep. AFM 94-06, Technical University of Denmark, Lyngby, 1994. a
Pirrung, G., Hansen, M. H., and Aagaard Madsen, H.: Improvement of a near wake
model for trailing vorticity, J. Phys. Conf. Ser.,
555, 012083, https://doi.org/10.1088/1742-6596/555/1/012083, 2014. a
Ramos-García, N., Sørensen, J., and Shen, W.: Three-dimensional
viscous-inviscid coupling method for wind turbine computations, Wind Energy,
19, 67–93, 2016. a
Ramos García, N., Spietz, H., Sørensen, J., and Walther, J.: Vortex
simulations of wind turbines operating in atmospheric conditions using a
prescribed velocity-vorticity boundary layer model, Wind Energy, 21,
1216–1231, https://doi.org/10.1002/we.2225, 2018. a
Rasmussen, J.: Particle Methods in Bluff Body Aerodynamics, Ph.D. thesis, DTU
Mechanical Engineering, Lyngby, Denmark, 2011. a
Schepers, J., Boorsma, K., Madsen, H. Aa., et al.: IEA Wind TCP Task
29, Phase IV: Detailed Aerodynamics of Wind Turbines, IEA Wind, Zenodo [data set], https://doi.org/10.5281/zenodo.4817875, 2021. a
Shampine, L. F. and Reichelt, M. W.: The matlab ode suite, SIAM J. Sci. Comput., 18, 1–22, 1997. a
Sørensen, N.: General purpose flow solver applied to flow over hills, Ph.D.
thesis, Risø National Laboratory, Roskilde, Denmark, published 2003, 1995. a
Sørensen, N. N.: HypGrid2D a 2-D Mesh Generator, Risø-R-1035-(EN),
Risø National Laboratory, Roskilde, Denmark, 1998. a
Wang, T. and Coton, F. N.: A high resolution tower shadow model for downwind
wind turbines, J. Wind Eng. Ind. Aerod., 89,
873–892, 2001. a
Zahle, F.: Parametric Geometry Library (PGL), Tech. rep., DTU Wind Energy,
available at: https://gitlab.windenergy.dtu.dk/frza/PGL (last access: 23 November 2020), 2019. a
Zuteck, M.: Adaptive blade concept assessment: curved platform induced twist
investigation, Tech. rep., Sandia National Labs., Albuquerque, NM, USA, 2002. a
Short summary
An engineering aerodynamic model for the swept horizontal-axis wind turbine blades is proposed. It uses a combination of analytical results and engineering approximations. The performance of the model is comparable with heavier high-fidelity models but has similarly low computational cost as currently used low-fidelity models. The model could be used for an efficient and accurate load calculation of swept wind turbine blades and could eventually be integrated in a design optimization framework.
An engineering aerodynamic model for the swept horizontal-axis wind turbine blades is proposed....
Altmetrics
Final-revised paper
Preprint